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Introduction



Motivation

I Domain-Range Semigroups to model program correctness
[DJS09]

I Functional structures for deterministic programs
I Relational structures for nondeterministic programs



The Demon and Total Correctness

I Demonic calculus to model the behaviour of programs
when the Demon is in charge of nondeterministic choices

I This can be exploited to model total correctness of
nondeterministic programs algebraically [HMS20, HŠ21]



Some Definitions

D(S) = {(x , x) | ∃y : (x , y) ∈ S}

R(S) = {(y , y) | ∃x : (x , y) ∈ S}

S; T = {(x , z) | ∃y : (x , y) ∈ S, (y , z) ∈ T}

S ∗ T = {(x , y) ∈ S; T | ∀z : (x , z) ∈ S ⇒ (z, z) ∈ D(T )}

for S,T ⊆ X × X



Some Definitions

Let τ be a signature containing predicates, constants, and
operations, defined for binary relations.

A τ -structure S is proper if there exists some base X , the
elements of S are relations over X , and it is closed under the
operations in τ .

The representation class R(τ) is the class of all proper τ
structures, closed under isomorphic copies. An isomorphism
mapping a τ -structure in R(τ) to a proper structure is called a
representation.



Some Definitions

A representation is finite if the image is a proper structure with
its elements binary relations over a finite base X .

If all finite members of R(τ) have a finite representation, it is
said to have the Finite Representation Property (FRP).

R(τ) is said to be finitely axiomatisable if membership can be
axiomatised with finitely many first order formulas.
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Similarity Class with FRP



Zareckiı̆’s Ordered Semigroups

Theorem [Zar59]
R(≤, ; ) is axiomatised finitely by partial order, associativity, and
monotonicity. It’s finite members also have the FRP.

Amend S with an identity
element e to obtain S ′, for
faithfulness.

Then let θ : S → ℘(S ′ × S ′)
where

(s, t) ∈ aθ ⇔ t ≤ s; a

for all s, t ∈ S ′,a ∈ S.

s t

a



Ordered Domain Algebras

Theorem [HE13]
R(≤,D,R,^,0,1,1′, ; ) is axiomatised by finitely many axioms.
It’s finite members also have the FRP.

Define the set of good sets G ⊆ ℘(S)
as the set of meet completions.

Then let θ : S → ℘(G × G) where

(S,T ) ∈ aθ ⇔ (S; a ⊆ T ∧ T ; ă ⊆ S)

for all S,T ∈ G,a ∈ S.

S T

a

ă



FRP for Wider Similarity Class

1. Proof for FRP for ordered domain algebras [HE13] only
requires ≤,D,R,^, ; to be in the signature

2. ≤ can be defined implicitly as a ≤ b if and only if for every
representation θ we have aθ ≤ bθ

3. Range can be defined implicitly R(a) = D(ă)

Proposition

FRP holds for the similarity class

{D,^, ; } ⊆ τ ⊆ {≤,^,D,R,0,1,1′, ; }
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R(D,R, ∗) is not Finitely Axiomatisable



The Angelic Signature

Theorem [HM11]
R(D,R, ; ) is not finitely axiomatisable.

1. Define ≤ implicitly by saying a; D(b); c ≤ a; c and close
under transitivity

2. Define unrepresentable structures with n-length ≤-cycles,
for each n < ω

3. Show that the non-principal ultraproduct of these
unrepresentable structures is representable



The Demon Adds an Axiom

Recall, for S,T ⊆ X × X

S ∗ T = {(x , y) ∈ S; T | ∀z : (x , z) ∈ S → (z, z) ∈ D(T )}

This means that for all S,T ⊆ X × X

D(S ∗ T ) ∗ S = S ∗ D(T )

Thus a ∗ D(b) ∗ c = D(a ∗ b) ∗ a ∗ c and the ≤ used to show
R(D,R, ; ) NFA can be finitely axiomatised in R(D,R, ∗).



The NFA Proof

Theorem
R(D,R, ∗) cannot be axiomatised by finitely many axioms.

1. Define v implicitly, using more elaborate axioms
2. Define unrepresentable structures with n-length v-cycles,

for each n < ω

3. Show that the non-principal ultraproduct of these
unrepresentable structures is representable
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Partial Converse and FRP



Partial Converse

Definition
For every representable {D,R, ; }- and {D,R, ∗}-structure S,
define a function C : S → ℘(S) such that for all a,b ∈ S if
b ∈ C(a), it will be true that in every representation of S, the
image of b will be above the converse of the image of a.

x y z w

a

b ∈ C(a)

b ∈ C(a)



Partial Converse and FRP

Why not use this to prove the FRP for converse-free
Domain-Range signatures using the Ordered Domain Algebra
argument?

Well, that proof relies on

(a; b)^ = b̆; ă

However, it may be the case that

C(b); C(a) ( C(a; b)
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Problems



Problems

Problem
Do converse-free Domain-Range Semigroups have the FRP?
How about their demonic cousins?

Problem
What happens when + is added to the signature? Does the
FRP still hold?

Conjecture

A signature τ ⊆ RA has the FRP if and only if

{−, ; } 6⊆ τ 6⊇ {·, ; }
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