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Motivation

Q: Minimal cost of an infinite path?

a
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Xa = 1 +Xa

Xb = min(1 +Xa, 20 +Xc)

Xc = 0 +Xc

1
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0

Xa =∞

Xb = 20

Xc = 0

polynomial equation system greatest sol.

= (R∞≥0, min, +, ∞, 0)
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Motivation: Semiring Provenance for Logics

Semiring Provenance

I Unify provenance analyses for databases

I Generalize to logics: Semiring semantics for FO, LFP, . . .

Semiring Semantics

I Idea: Replace Boolean model by semiring annotation:

a b  a b1
20

∞
∞

G |= Eaa ∧ Eab  π[[Eaa ∧ Eab]] = 1 + 20
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Motivation: Semiring Provenance for Logics

Fixed-Point Logic

I ϕ(v) = [gfpR x. (∃y Exy ∧Ry)](v)
minimal cost of an infinite path from v (in )

I ϕwin(v): winning region in Büchi games
modify the game so that Player 0 wins (polynomial semiring)

v w

c

b

a

to see v infinitely often:
π[[ϕwin(v)]] = a+ c

How to evaluate LFP-formulae?

I least/greatest solutions of PES (in absorptive semirings)
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Fixed-Point Iteration?

F :



Xa

Xb

Xc

 7→

=
=
=



1 +Xa

min(1 +Xa, 20 +Xc)
0 +Xc



0
0
0

 7→
1
1
0

 7→
2
2
0

 7→ · · · 7→
20
20
0

 7→
21
20
0

 7→
22
20
0

 7→ · · · ∞
20
0
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Faster Computation

Main Result

Let (K,+, •, 0, 1) be an absorptive, fully-continuous semiring.
Given a PES with n variables over K, we can compute:

I lfp(F) = Fn(0).

I gfp(F) = Fn
(
(Fn(1))∞

)
.

We only need a polynomial number of semiring operations

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 5 / 18



Chapter I

Absorptive Semirings



Semirings with Orders

Commutative Semiring

(K,+, •, 0, 1) such that (K,+, 0) and (K, •, 1) are commutative
monoids, • distributes over +, 0 6= 1 and 0 • a = 0.

A semiring is naturally ordered if

a ≤ b ⇐⇒ ∃c. a+ c = b

defines a partial order.

Examples: Boolean semiring, R≥0, , N[X]
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Absorptive Semirings

Absorption

A semiring is absorptive if a+ ab = a for all a, b.

Some facts

I Absorptive semirings are idempotent and naturally ordered

I Equivalent definitions:

a+ ab = a ⇐⇒ > = 1 ⇐⇒ ab ≤ a
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A semiring is absorptive if a+ ab = a for all a, b.

Some facts

I Absorptive semirings are idempotent and naturally ordered

I Equivalent definitions:

a+ ab = a ⇐⇒ > = 1 ⇐⇒ ab ≤ a

Remember: Absorption = decreasing multiplication
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Absorptive Semirings with Fixed Points

Continuity

An absorptive semiring is K is fully continuous if ≤ is a complete
lattice satisfying the continuity property:⊔

(a ◦ C) = a ◦
⊔
C and

l
(a ◦ C) = a ◦

l
C

for all non-empty chains C ⊆ K and all a ∈ K, ◦ ∈ {+, •}.

Infinitary Power

For a ∈ K we define a∞ :=
l

n∈N
an.
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Absorptive Semirings with Fixed Points

Examples

I Boolean semiring ({0, 1},∨,∧, 0, 1) a∞ = a

I = (R∞≥0,min,+,∞, 0) a∞ =

{
0, a = 0

∞, else

I  Lukasiewicz semiring ([0, 1],max, ?, 0, 1)
with a ? b = max(0, a+ b− 1)

a∞ =

{
1, a = 1

0, else

I Any distributive lattice or min-max semiring a∞ = a

Problem: N and N[X] not absorptive!
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Absorptive Polynomials

Modify N[X] by

I dropping coefficients,

I absorption among monomials (by comparing exponents),

I allowing ∞ as exponent.

2x2y + xy2 + 5x2 + 3z10

Absorptive polynomials S∞[X] are

I always finite (Dickson’s lemma),

I the most general absorptive, fully-continuous semiring.

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 10 / 18



Absorptive Polynomials

Modify N[X] by

I dropping coefficients,

I absorption among monomials (by comparing exponents),

I allowing ∞ as exponent.

2x2y + xy2 + 5x2 + 3z10

Absorptive polynomials S∞[X] are

I always finite (Dickson’s lemma),

I the most general absorptive, fully-continuous semiring.

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 10 / 18



Absorptive Polynomials

Modify N[X] by

I dropping coefficients,

I absorption among monomials (by comparing exponents),

I allowing ∞ as exponent.

2x2y + xy2 + 5x2 + 3z10

Absorptive polynomials S∞[X] are

I always finite (Dickson’s lemma),

I the most general absorptive, fully-continuous semiring.

absorbed

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 10 / 18



Absorptive Polynomials

Modify N[X] by

I dropping coefficients,

I absorption among monomials (by comparing exponents),

I allowing ∞ as exponent.

2x2y + xy2 + 5x2 + 3z∞

Absorptive polynomials S∞[X] are

I always finite (Dickson’s lemma),

I the most general absorptive, fully-continuous semiring.

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 10 / 18



Absorptive Polynomials

Modify N[X] by

I dropping coefficients,

I absorption among monomials (by comparing exponents),

I allowing ∞ as exponent.

2x2y + xy2 + 5x2 + 3z∞

Absorptive polynomials S∞[X] are

I always finite (Dickson’s lemma),

I the most general absorptive, fully-continuous semiring.

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 10 / 18



Chapter II

Proof Sketch



Proof Overview: Least Solution

Main Result

Let (K,+, •, 0, 1) be an absorptive, fully-continuous semiring.
Given a PES with n variables over K, we can compute:

I lfp(F) = Fn(0).

I gfp(F) = Fn
(
(Fn(1))∞

)
.

Remark: lfp follows from [Esparza, Kiefer, Luttenberger, ICALP’08]
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)
.

Remark: lfp follows from [Esparza, Kiefer, Luttenberger, ICALP’08]

Newton’s method for lfp(F) converges

in n steps in idempotent semirings

Newton’s method = fixed-point iteration
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Proof Overview: Greatest Solution

Main Result

Let (K,+, •, 0, 1) be an absorptive, fully-continuous semiring.
Given a PES with n variables over K, we can compute:

I lfp(F) = Fn(0).

I gfp(F) = Fn
(
(Fn(1))∞

)
.

Proof:

1 Express gfp(F) using derivation trees

2 Apply absorption to derivation trees

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 12 / 18



Derivation Trees

X = aXY + b

Y = cZ2

Z = dZ + e

Xb

yield: b

Xa

Xb Yc

Ze Ze

yield: abce2

Xa

Xb Yc

Zd Zd

Zd Zd

yield: a • b • c • d∞

lfp =
∑{

yield( )
∣∣ finite

}
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yield: a • b • c • d∞

lfp =
∑{

yield( )
∣∣ finite

}
gfp =

∑{
yield( )

∣∣∣ finite
infinite

}
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Cutting Down Derivation Trees

Observation: Prefixes of correspond to iteration steps.

+ + =
Q
Q
Q

F(1)

F2(1)

F3(1)

...

l

n∈N

: gfp(F)
∑{

yield( )
∣∣ finite/infinite

}
= �
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Proof Overview: Greatest Solution

Main Result

Let (K,+, •, 0, 1) be an absorptive, fully-continuous semiring.
Given a PES with n variables over K, we can compute:

I lfp(F) = Fn(0).

I gfp(F) = Fn
(
(Fn(1))∞

)
.

Proof:

1 Express gfp(F) using derivation trees X
2 Apply absorption to derivation trees
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Absorption on Derivation Trees

If each coefficient occurs more often in than in ,
then yield( ) is absorbed by yield( ).

complicated tree

X

Z
Z

Y

Z

Z

Y
Y

ZY

d
eterm

in
istic

d
eterm

in
istic

d
eterm

in
istic

ultimately periodic

X

Z

Z

Y

?

d
eterm

in
istic

d
eterm

in
istic

X

Z Y

n

nice tree

≤ ≤
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Computing Nice Trees

gfp(F) =
∑{

yield( )
∣∣ nice

}
= . . .

Fn(Fn(1)∞)

d
eterm

in
istic

d
eterm

in
istic

X

Z Y

n

n

Fn(1)

Fn(1)∞

Fn( . . . )

�
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Summary

Result

I Greatest solutions of PES in absorptive, fully-continuous semirings . . .

I . . . are computable in a polynomial number of semiring operations

1

Q F2(1)

2

d
et.

d
et.

X

Z Y
n

Alternative: Symbolic approach for S∞[X]

I Solve first equation for X, substitute and solve recursively

Future Work: Compute nested fixed points in absorptive semirings

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 18 / 18



Summary

Result

I Greatest solutions of PES in absorptive, fully-continuous semirings . . .

I . . . are computable in a polynomial number of semiring operations

1

Q F2(1)

2

d
et.

d
et.

X

Z Y
n

Alternative: Symbolic approach for S∞[X]

I Solve first equation for X, substitute and solve recursively

Future Work: Compute nested fixed points in absorptive semirings

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 18 / 18



Summary

Result

I Greatest solutions of PES in absorptive, fully-continuous semirings . . .

I . . . are computable in a polynomial number of semiring operations

1

Q F2(1)

2

d
et.

d
et.

X

Z Y
n

Alternative: Symbolic approach for S∞[X]

I Solve first equation for X, substitute and solve recursively

Future Work: Compute nested fixed points in absorptive semirings

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 18 / 18



Summary

Result

I Greatest solutions of PES in absorptive, fully-continuous semirings . . .

I . . . are computable in a polynomial number of semiring operations

1

Q F2(1)

2

d
et.

d
et.

X

Z Y
n

Alternative: Symbolic approach for S∞[X]

I Solve first equation for X, substitute and solve recursively

Future Work: Compute nested fixed points in absorptive semirings

M. Naaf (RWTH Aachen) Computing Least and Greatest Fixed Points in Absorptive Semirings 18 / 18



Symbolic Approach for Absorptive Polynomials

X = aX2 + bY

Y = cX + d

X = a∞ + bY

Y = c( a∞ + bY ) + d

X = a∞ + bY

Y = b∞c∞ + ca∞ + d

X = a∞ + b∞c∞ + bd

Y = b∞c∞ + ca∞ + d

solve for X, substitute

solve for Y

replace backwards

Theorem

Greatest solution of X = P (X) is

P (0) + P ′(1)∞

and this holds uniformly over all in-
stantiations of additional variables.

Multivariate solutions work due to the
universal property of S∞[X].

Issue: K[X,Y ] = K[X][Y ]

based on [Hopkins, Kozen, LICS’99]
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