Languages of Higher-Dimensional Automata

Uli Fahrenberg

EPITA Rennes, France

RAMiCS 2021

Friends

- Christian Johansen, Gjøvik, Norway
- Georg Struth, Sheffield, UK
- Krzysztof Ziemiański, Warsaw, Poland
- Cameron Calk, Paris, France
- James Cranch, Sheffield, UK
- Eric Goubault, Paris, France

The (i)Po(m)set Project

> What

> Who

> When

> How

> What > Contact

What

The (i)Po(m)set Project is a research project at the crossroads of concurrency theory, algebra, and geometry. It aims to understand the basics of concurrency theory and develop its foundations.

Who

Members:

- Uli Fahrenberg, EPITA Rennes, France
- Christian Johansen, Norwegian University of Science and Technology, Gjøvik, Norway
- Georg Struth, University of Sheffield, UK
- · Krzysztof Ziemiański, University of Warsaw, Poland

Associates:

- · Cameron Calk, École polytechnique, Paris, France
- . James Cranch, University of Sheffield, UK
- Eric Goubault, École polytechnique, Paris, France

Former members or associates:

How

Members and possibly associates meet about once a week on zoom to discuss research and papers and otherwise banter over big and small things.

What

Research published by the (i)Po(m)set Project:

- Uli Fahrenberg, Christian Johansen, Christopher Trotter, Krzysztof Ziemiański: Sculptures in Concurrency. Logical Methods in Computer Science 17(2) (2021)
- Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa: Generating Posets Beyond N. RAMICS 2020: 82-99
- Beyond N. RAMiCS 2020: 82-993. Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański: Domain Semirings
- United. CoRR abs/2011.04704 (2020)
 4. Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański: Languages of
- Higher-Dimensional Automata. Mathematical Structures in Computer Science (2021)
 5. Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański: Ir-Multisemigroups
- and Modal Convolution Algebras. CoRR abs/2105.00188 (2021)

 6. Cameron Calk, Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański: Ir-
- Multisemigroups, Modal Quantales and the Origin of Locality. RAMICS 2021
- Uli Fahrenberg, Christian Johansen, Georg Struth, Krzysztof Ziemiański: Posets with Interfaces for Concurrent Kleene Algebra. CoRR abs/2106.10895 (2021)

Software and data published by the (i)Po(m)set Project:

- Python code related to [2]
- Julia code related to [6]
- Julia code related to [0]
 Inocate and an-inocate on up to 8 points, and forbidden substructures on up to 10 points.

2 Languages

Posets with interfaces

4 Conclusion

HDA

•00

HDA

•00

a and b are independent

HDA

•00

HDA

•00

pairwise independent

 $\{a, b, c\}$ independent

Higher-dimensional automata & concurrency

HDA as a model for concurrency:

points: states

HDA

- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata \cong asynchronous transition systems [Bednarczyk]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature"

Another example

HDA

- no cubes, all faces except middle horizontal
- a and b independent; c introduces conflict; d releases conflict

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix}, \dots \right\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$

 $L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_2$ sets of pomsets

Pomsets

A (finite) pomset ("partially ordered multiset") (P, \leq, ℓ) :

- a finite partially ordered set (P, \leq)
- with labeling $\ell: P \to \Sigma$
- (AKA labeled partial order)
- (up to isomorphism: don't care about identity of points)
- [Winkowski '77], [Lamport '78], etc.

Another example

$$\begin{pmatrix} a \rightarrow b \\ c \rightarrow d \end{pmatrix}$$

not series-parallel!

Conclusion

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it does not contain (\Longrightarrow)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_i, r_i]$ iff $r_i \leq I_i$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it does not contain (\Longrightarrow)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[l_i, r_i] \leq [l_j, r_j]$ iff $r_i \leq l_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$

$$\begin{pmatrix} a \rightarrow b \\ c \rightarrow d \end{pmatrix}$$

Concatenation of HDA

$$\begin{pmatrix} a \\ c \end{pmatrix}$$

Two possible compositions:

$$\begin{pmatrix} a \\ c \end{pmatrix}$$

Two possible compositions:

$$\begin{pmatrix} a \Longrightarrow a \\ b \Longrightarrow c \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \longrightarrow c \end{pmatrix}$$

$$\begin{pmatrix} a \\ c \end{pmatrix}$$

Two possible compositions:

b

- not clear whether the two a are the same event
- idea: let the objects specify how they may be composed
- ⇒ pomsets with interfaces

$$\begin{pmatrix} a \\ b \longrightarrow c \end{pmatrix}$$

Posets with interfaces

Definition

A poset with interfaces (iposet) is a poset P plus two injections

$$[n] \stackrel{s}{\longrightarrow} P \stackrel{t}{\longleftarrow} [m]$$

such that s[n] is minimal and t[m] is maximal in P.

- $([n] = \{1, \ldots, n\})$
- s: starting interface; t: terminating interface
- events in t[m] are unfinished; events in s[n] are "unstarted"

Gluing composition

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

ullet only defined if terminating int. of P_1 is equal to starting int. of P_2

Gluing composition

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

ullet only defined if terminating int. of P_1 is equal to starting int. of P_2

Interval Orders vs Series-Parallel Posets

- interval orders are used in Petri net theory and distributed computing
- but have no algebraic representation (so far)
- sp-posets are used in concurrency theory & have nice algebraic theory
- Concurrent Kleene algebra
- int. orders are 2+2-free; sp-posets are **N**-free
- incomparable: 2+2 is sp; **N** is interval
- ⇒ [FJST RAMiCS'20]

- For an HDA A, L(A) is
 - a set of (labeled) interval orders
 - closed under subsumption
- For any interval order P, \exists HDA \square^P for which $L(\square^P) = \{P\} \downarrow$
- and then for any HDA A, $P \in L(A)$ iff $\exists f : \Box^P \to A$
 - very useful criterion
- Any finite language is recognized by an HDA
- \bullet $L(A \cup B) = L(A) \cup L(B)$
- L(A||B) = L(A)||L(B)| (more precisely, $(L(A)||L(B))\downarrow \cap IO$)
- [FJSZ MSCS'21]

Conclusion

- Higher-dimensional automata: nice model for concurrency
- Languages of HDA: sets of labeled interval orders
- Po(m)sets with interfaces for compositionality / algebra

Open / coming up:

- Higher-dimensional regular languages
- 2-categories with lax tensors: algebraic setting for iposets
- Combinatorial characterization of gluing-parallel iposets
- . . .

Forbidden substructures

- sp-posets $\hat{=}$ **N**-free
- gluing-parallel posets ⇒ free of

Forbidden substructures

- sp-posets $\hat{=}$ **N**-free
- gluing-parallel posets ⇒ free of

Forbidden substructures

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{}$ 2+2-free
- gluing-parallel posets ⇒ free of

Some numbers

n	P(<i>n</i>)	SP(n)	IO(n)	GP(n)	IP(n)	GPI(n)
0	1	1	1	1	1	1
1	1	1	1	1	4	4
2	2	2	2	2	17	16
3	5	5	5	5	86	74
4	16	15	15	16	532	419
5	63	48	53	63	4068	2980
6	318	167	217	313	38.933	26.566
7	2045	602	1014	1903	474.822	289.279
8	16.999	2256	5335	13.943	7.558.620	3.726.311
9	183.231	8660	31.240	120.442		
10	2.567.284	33.958	201.608	1.206.459		
11	46.749.427	135.292	1.422.074			
EIS	112	3430	22493	345673	331158	331159