On the Computation of Isolated Sublattices

Roland Glück roland.glueck@dlr.de Deutsches Zentrum für Luft- und Raumfahrt Marseille/Luminy, 5th November 2021

dlr.de \cdot Slide 1 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021 **Isolated Sublattices**

Definition

Let (S, \leq) be a lattice. A subset $S' \subseteq S$ is called an *isolated sublattice* if it fulfills the following properties:

- S' is a sublattice with greatest element $\top_{S'}$ and least element $\perp_{S'}$.
- $\forall x \notin S' \forall y' \in S' : y' \leq x \Rightarrow \top_{S'} \leq x$
- $\forall x \notin S' \forall y' \in S' : x \leq y' \Rightarrow x \leq \bot_{S'}$

Definition

An isolated sublattice is called a *summit isolated sublattice* if $T_S = T$ holds. An isolated sublattice is called an *isolated sublattice with bottleneck* if T'_S is meet-irreducible.

- nontrivial: $S' \neq S$, useful: $S' \neq \{s'\}$
- Can be used for counting closure operators
- Efficient algorithm?

dlr.de - Slide 2 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021

Examples

< ≣ > • • • • • • 同

dlr.de - Slide 3 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021

Conventions and Notations

- Lattices are given by their Hasse diagram (S, E)
- $(u, v) \in E \Rightarrow u < v$
- Reverse graph denoted by $G^{\leftarrow} = (S, E^{\leftarrow})$
- Undirected version denoted by G^{\leftrightarrow}
- u is called a (v, w)-separator if every path from v to w contains u

= DOR

dlr.de - Slide 4 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021 Summit Isolated Sublattices

- all isolated sublattices have the form [x, y]
- summit isolated sublattices have the form $[z, \top]$
- [z, ⊤] is a lattice
- $x \notin [z, \top] \land y' \in [z, \top] \land y' \leq x \Rightarrow \texttt{FALSE}$
- hence $\forall x \notin S' \forall y' \in S' : y' \leq x \Rightarrow \top_{S'} \leq x$ superfluous
- so we have:

Lemma

 $[z, \top]$ is a summit isolated sublattice iff the following implication holds:

- $\forall x \notin [z, \top] \forall y' \in [z, \top] : x \leq y' \Rightarrow x \leq z.$
- still simpler:

Lemma

 $[z, \top]$ is a summit isolated sublattice iff for all $x \notin [z, \top]$ the inequality $x \leq z$ holds.

- $\bullet \Rightarrow : y' =_{def} \top$
- \Leftarrow : $x \leq z$ is TRUE by assumption for all $x \notin [z, \top]$

dlr.de - Slide 5 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021

Connection with Separators

Lemma

Let (S, \leq) be a finite lattice with Hasse diagram G = (S, E). Then every summit isolated sublattice of S has the form [z, T] where z is a (T, \bot) -separator in G^{\leftarrow} .

- trivial for $z = \bot$ and $z = \top$
- consider a path $p = v_1 v_2 \dots v_n$ in G^{\leftarrow} with $v_1 = \top$ and $v_n = \bot$
- consider $i \in [1, n 1]$ with $v_i \in [z, \top]$ and $v_{i+1} \notin [z, \top]$
- assume that $v_i \neq z$ holds
- now $v_i \in [z, \top]$ implies $z < v_i$, and $(v_i, v_{i+1}) \in E^{\leftarrow}$ implies $v_{i+1} < v_i$
- by the previous slide we have $v_{i+1} < z$
- transitivity of < yields $v_{i+1} < v_i$
- so $(v_i, v_{i+1}) \notin p_{\neq}$
- computation of separators in directed graph via modified flow algorithms

dlr.de - Slide 6 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021 Characterization Using Undirected Graphs

Theorem

Let (S, \leq) be a finite lattice with Hasse diagram G = (V, E). Then every summit isolated sublattice of S has the form [z, T] where z is a (T, \bot) -separator in G^{\leftrightarrow} .

- trivial for $z = \bot$ and $z = \top$
- consider a path $p = v_1 v_2 \dots v_n$ in G^{\leftrightarrow} with $v_1 = \top$ and $v_n = \bot$
- consider *i* with $v_i \in [z, \top]$ and $v_{i+1} \notin [z, \top]$
- claim: $v_i = z$
- $v_i \in [z, \top]$ and $v_{i+1} \notin [z, \top]$ imply $(v_i, v_{i+1}) \in E^{\leftarrow}$
- $v_i \in [z, \top] \Rightarrow \exists p' = v'_1 v'_2 \dots v'_{n'}$ in G^{\leftarrow} with $v'_1 = \top, v'_{n'} = v_i$ and $v'_{i'} \neq z$
- analogously, $\exists p'' = v''_1 v''_2 \dots v''_{n''}$ in G^{\leftarrow} with $v''_1 = v_{i+1}, v''_{n''} = \bot$ and $v''_{i'} \neq z$
- hence $v'_1v'_2 \dots v'_{n'}v''_1v''_2 \dots v''_{n''}$ is a \top - \bot -path in $G \leftarrow$
- claim follows from previous slide

dirde - Slide 7 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021 Linear Time Algorithm for Summit Isolated Sublattices

• algorithm by Tarjan (1972) computes separators in undirected graphs in linear time

Theorem

Given the Hasse diagram (S, E) of a finite lattice S, it can be determined in $\mathcal{O}(|E|)$ time whether S has a nontrivial useful summit isolated sublattice. In the case of existence, a nontrivial useful summit isolated sublattice can be determined also in $\mathcal{O}(|E|)$ time.

- time bound is asymptoticaly optimal
- uses only a simple DFS, no sophisticated network flow algorithms
- computation (in the case of existence) of an inclusion-maximal nontrivial useful summit isolated sublattice in $\mathcal{O}(|{\it E}|)$

1900

dlr.de · Slide 8 of 8 > Computation of Isolated Sublattices > Roland Glück > Marseille/Luminy, 5th November 2021 General Isolated Sublattices

Lemma

Let (S, \leq) be a finite lattice with Hasse diagram G = (S, E). Then all isolated sublattices of S are exactly the intervals [x, y] where x is a (\perp, y) -separator in G and y is an (x, \top) -separator in G.

- leads to quadratic time algorithm
- number of sublattices may be quadratic in |S|
- (consider a chain)
- however, number of inclusion-maximal isolated sublattices is bounded by |S|
- (inclusion-maximal isolated sublattices are disjoint)
- separator property is transitive:
- if v_2 is a (v_1, v) -separator and v_3 is a (v_2, v) -separator then v_3 is a (v_1, v) -separator
- here no use of supremum/infimum properties
- existence of (v_1, v_3) , (v_2, v_3) and (v_1, v_4) excludes existence of (v_2, v_4) (for distinct v_i)
- hammocks?

