

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Finite Representation Property for Relation Algebra Reducts

Jaš Šemrl

RAMiCS 2021

Introduction

The Conjecture

Failure of FRP with Negation and Composition

RA Embedding and FRP

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲目 ● のへで

Section 1

Introduction

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

- Tarskian Representable Relation Algebras are badly behaved
- Decidability guarantees follow from FRP, FA
- FRP does not hold for the full language of Tarskian Relation Algebras
- Many negative FA results for reduct languages
- What about the FRP?

Proper Relation Algebras are $\{0, 1, +, \cdot, -, 1', -, ;\}$ -structures whose elements are binary relations over some base set *X* and

- 1. $0, 1, +, \cdot, -$ interpreted as proper Boolean operations
- 2. 1', \smile , ; interpreted as the relational identity, converse, and composition, respectively, i.e.

$$1' = \{(x, x) \mid x \in X\}$$

 $\check{S} = \{(y, x) \mid (x, y) \in S\}$
 $S; T = \{(x, z) \mid \exists y : (x, y) \in S, (y, z) \in T\}$
for $S, T \subseteq X \times X$

Let τ be a RA-reduct language.

Finite Representation Property (FRP)

 τ is said to have the Finite Representation Property (FRP) if all finite proper τ -structures are isomorphic to a proper τ -structure with a finite base.

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Section 2

The Conjecture

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

≜UCL

Let τ be a RA-reduct signature.

Conjecture

 τ has the FRP if and only if

 $\{-,;\} \not\subseteq \tau \not\supseteq \{\cdot,;\}$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- ▶ All signatures containing $\{\cdot, ; \}$ have no FRP [Neu16]
- ▶ All signatures containing $\{-,;\}$ have no FRP

<ロト < 母 ト < 目 ト < 目 ト 、 目 ・ の Q ()

- Composition-free signatures have FRP
- ► Cayley Representation for Groups works for {; }, {1', ; }
- ► {≤,;} have FRP [Zar59]
- ▶ $\{D, \smile,;\} \subseteq \tau \subseteq \{0, 1, \le, 1', \smile,;\}$ have FRP [HE13, Šem21],
- $\{\leq, \backslash, /, ;\}$ have FRP [Rog20]

Section 3

Failure of FRP with Negation and Composition

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → のへで

≜UCL

Theorem

Any signature τ containing $\{-,;\}$ fails to have the FRP.

[±]UCL

Theorem

Any signature τ containing $\{-,;\}$ fails to have the FRP.

Proof:

The Point Algebra is the proper Relation Algebra over the base \mathbb{Q} with the following 8 elements (interpreted arithmetically)

$$\{0,1,=,\neq,<,\leq,>,\geq\}$$

Observe how all operations in the language of RA are well defined for this algebra.

Assume there existed a proper τ -structure over a finite base *X*, isomorphic to the Point Algebra via some isomorphism θ .

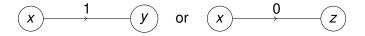
There must exist $x, y \in X$ with $(x, y) \in 1^{\theta}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

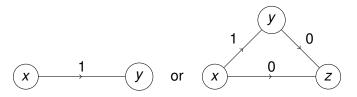
There must exist $x, y \in X$ with $(x, y) \in 1^{\theta}$.



There must exist $x, y \in X$ with $(x, y) \in 1^{\theta}$.



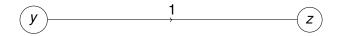
There must exist $x, y \in X$ with $(x, y) \in 1^{\theta}$.



There must exist $x \in X$ with $(x, x) \in 1^{\theta}$.

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → のへで

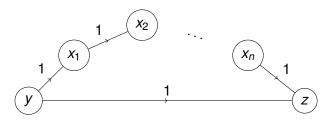
There must exist $x \in X$ with $(x, x) \in 1^{\theta}$.



・ロト・日本・日本・日本・日本・日本

There must exist $x \in X$ with $(x, x) \in 1^{\theta}$.

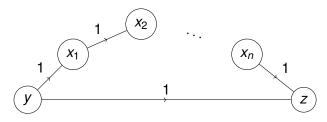
 $1 = 1; 1 = 1; 1; 1 = \ldots = 1^{n+1} = \ldots$



where |X| = n - 1.

There must exist $x \in X$ with $(x, x) \in 1^{\theta}$.

$$1 = 1; 1 = 1; 1; 1 = \ldots = 1^{n+1} = \ldots$$



where |X| = n - 1.

So, there must exist i < j such that $x_i = x_j = x$ and we get $(x, x) \in 1^{\theta}$ as $1 = 1^{j-i}$.

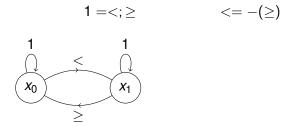
・ロト・日本・日本・日本・日本・日本

There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$

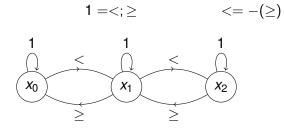
There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

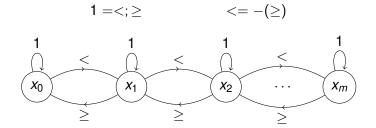
There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$



There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$



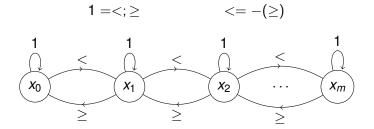
There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

There must exist unique points $x_0, x_1, ..., x_m \in X$ for any $m < \omega$



We've Reached a contradiction

Section 4

RA Embedding and FRP

・ロト・日本・日本・日本・日本・日本

Proposition

Every finite τ -structure, where $\{-,;\} \not\subseteq \tau \not\supseteq \{\cdot,;\}$, is finitely representable if and only if it embeds into a finite relation algebra.

・ロト・日本・日本・日本・日本・日本

ArXiv Identifier

http://arxiv.org/abs/2111.01213

▲ロト★課と★語と★語と、語、約9.00

References

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Robin Hirsch and R Egrot.

Meet-completions and representations of ordered domain algebras.

The Journal of Symbolic Logic, 2013

Murray Neuzerling.

Undecidability of representability for lattice-ordered semigroups and ordered complemented semigroups. *Algebra universalis*, 76(4):431–443, 2016.

Daniel Rogozin.

The finite representation property for some reducts of relation algebras. arXiv preprint arXiv:2007.13079, 2020.

Jaš Šemrl.

Domain range semigroups and finite representations.

arXiv preprint arXiv:2106.02709, 2021.

KA Zareckii.

The representation of ordered semigroups by binary relations, izv. vyss. ucebn. zaved. *Matematika*, (6):13, 1959.