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The Godel-McKinsey-Tarski Translation

@ The Godel-McKinsey-Tarski translation is one of the
fundamental ideas of intuitionistic logic and modal logic.

@ It interprets intuionistic logic in the classical modal logic S4.
@ Algebraic perspective is illuminating: The algebraic models of
intuitionistic logic and $4 are respectively Heyting algebras
and interior algebras (i.e., Boolean algebras with an interior

operator).

o Algebraically, the GMT translation says that we can view
Heyting algebras as the elements of interior algebras such that
Ox = x, where O is the interior operator.
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The Main ldea

@ The content of our paper: The same set-up applies when
intuitionistic logic replaced by generalized basic logic and
classical logic is replaced by tukasiewicz logic.

@ Extends the classical translation result to an important
substructural setting, contributing to the general program of
extending intuitionsitic results to substructural logics.

@ Links some prominent substructural logics, adding to our
understanding of the general structure of substructural logics.

@ This work is based on: F. 2021 ‘Poset Products as Relational

Models’ and the work of P. Jipsen and F. Montagna on the
poset product construction.
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History of GBL

@ Generalized basic logic arose out of efforts among algebraic
logicians to extend Hajek’s basic fuzzy logic.

o ldea is to extend BL-algebras to encompass Heyting algebras,
lattice-ordered groups, their negative cones, and other
algebras in the vicinity.

@ In the case with exchange, weakening, and falsum (lower
bound), generalized basic logic is a natural common fragment
of basic logic and intuitionistic logic.

@ We first discuss GBL from a logical point of view, and fix a
countable set Var of propositional variable symbols and a
basic language £ = {A,V,-,—,0,1}.
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Hilbert Systems for GBL, BL, and L

(Al) p = ¢
(A2) (¢ =) = ((¥ = x) = (¢ = X))
) (o) = (Y- 9)
) (@) =
) (o= (¥ —x)) = ((¢-9¥) = X))
) ((p-¥) = X)) = (¢ = (¥ = X))
) (@ (=) = (e AY)
) (e AY) = (¢ (¢ — )
) (pAY) = (P Ap)
)
)
)
)
)
)
)

(=) V(=)
—— <>  (usual abbreviations apply).
5/23



Modal tukasiewicz Logics

Let / be a fresh set of unary connective symbols (intended as
O-modals). We introduce a new family of logics £(/) by adding to
our calculus for £ the axioms
(Ko) Ble = ¢) = (Be — DY)
(Po) Ble-¢) < Op- Ty
(Mo) O(p A9) ¢ Op A DY
(01) Ol « 1
(00) B0+ 0
(O-Nec) ¢+ Op
The logic S4t(/) is obtained by further adding:
(To) Op = ¢
(40) Op — O0p
If I = {G, H}, then we obtain the logic S4:t by adding to
S4t(G, H) the axioms:
(GP) © — G—\H—\QD
(HF) © — H—|G—|90

O
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Temporal Logic and Some Abbreviations

We define diamonds by & = —0O- as usual. InS4;t, the diamond
connectives P and F are abbreviations for -H— and =G,
respectively. The typical intended interpretations of the modals
G,P,H, F are:

o Gy: "lt is always going to be the case that ¢."

@ P¢p: "It was true at one point in the past that ¢.”

@ Hy: "It always has been the case that ¢.”

o Fy: "It will be true at some point in the future that ¢."

(This descends from Prior’s tense logic). We also just denote
S4t(0) by S4t.
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Residuated Lattices

Definition:
A bounded commutative integral residuated lattice is an
algebra (A, A, V, -, —,0,1) such that

e (AN, V,0,1) is a bounded lattice.

e (A, - 1) is a commutative monoid.

e Forall x,y,z € A,

X y<z <<= x<y—z

We will usually write xy for x - y. Residuated lattices give the
equivalent algebraic semantics for extensions of the Full Lambek
calculus (with exchange, weakening, and falsum).
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Special Classes of Residuated Lattices

Residuated lattices originiate in the study of ideal lattices of
rings. Other prominant examples from classical logic include

lattice-ordered groups and relation algebras. A residuated
lattice is called:

e a GBL-algebra if it satisfies x(x — y) =~ x A y.

@ a Bl-algebra if it is a GBL-algebra satisfying
(x—=y)V(y—-x)~L1

@ a MV-algebra if it is a BL-algebra satisfying ——x = x, where
-x:=x—0.

@ a Heyting algebra if it satisfies xy ~ x A y.

These give algebraic models of the logics mentioned before.
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Algebraic Models

Definition:
Let / be a set of unary function symbols. We say that an algebra
A=(ANV,,—,0,1,{0}q¢) is an MV(I)-algebra provided
that:
Q (A A V,,—,0,1) is an MV-algebra.
@ Forevery D€/, Oisa {A,-,0,1}-endomorphism of
(A, AV, -, —,0,1).
Also:
e If O is an interior operator for every O € /, then we say that
A is an S4MV/(I)-algebra.
e An S4MV-algebra is an S4MV(l)-algebra where [ = {0} is a
singleton.
e An S4MV/(I)-algebra for | = {G, H} is called a
S4.MV-algebra if for every x,y € A,

x < G(y) <= P(x)<y.
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Algebraic Semantics

Theorem (F.-Zuluaga 2021):
@ The variety of MV(l)-algebras is the equivalent algebraic
semantics for £(/).
@ The variety of S4MV(I)-algebras is the equivalent algebraic
semantics for S4t(/).

@ The variety of S4;MV-algebras is the equivalent algebraic
semantics for S4;t.

Algebraic semantics quickly gives nice results regarding the modal
logics introduced, e.g. an analysis of congruences in these algebras
gives various forms of deduction theorems for the logics.
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The Translations

Definition:

We define a pair of translations M and T from the language
L ={A,V,-,0,1} into the languages of S4t and S4.t,
respectively. Set M(p) = Op for each p € Var, M(0) =0,
M(1) =1, and extend M recursively by:

o M(px 1) = M) x M(w), for x € {A,V,}.

o M(p — o) =D(M(p) = M()).
Further, if I is a set of formulas of £ then we define
M(T) ={M(p) : o € T}.

The translation T differs from M only by replacing O by G and
considering its codomain to be formulas of bimodal language
rather than the monomodal one.
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A Godel-McKinsey-Tarski theorem

Theorem (F.-Zuluaga 2021):

Let T U {p} be a set of L-formulas. Then:
O T FgeL ¢ if and only if M(I') Fsar M(¢p).
@ I kgL ¢ if and only if T(I') Fsax T(p).
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The Idea of the Proof of the GMT Translation

@ Proof of the GMT translation invokes algebraization along
with two components.

@ The first is a technical lemma regarding evaluations in
GBL-algebras.

@ Once one has the technical lemma, the hard part of the proof
of GMT translation is showing if that A is a GBL-algebra,
then there exists an S4MV-algebra (B, 0) such that A
embeds in Bp.

@ This second part is done by the work of Jipsen and Montagna
on poset products.
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A Key Technical Lemma

The proof of the translation proceeds algebraically, and the
following is the most important lemma.
Lemma (F.-Zuluaga 2021):
Let (A,O) be an S4MV-algebra.
Q@ Ap is a GBL-algebra.

@ Suppose that h: Var — A is an assignment, and define
h: Var — Ag by h(p) = O(h(p)). If o € Fmg, then
h(¢) = h(M(¢)).

@ If o € Fmg, then ¢ = 1 is valid Ag if and only if M(p) ~ 1 is
valid in A.

The same holds if A is replaced by and S4;MV algebra, O is
replaced by G, and M is replaced by T.
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Antichain Labelings

Definition:

Let (X, <) be a poset, and let {A, : x € X} is an indexed
collection of residuated lattices sharing a common least element 0
and common greatest element 1. An antichain labeling (or
ac-labeling is a choice function f € [, .y Ax such that

For all x,y € X with x < y,f(x) =0 or f(x) = 1.

1/2 1/2 0 1/2 0
0 0 1/2

A, Good Bad
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Poset Products

Poset products are one of the most powerful tools for working with
GBL-algebras.

Definition:

Let (X, <) be a poset and let {A : x € X} is an indexed
collection of residuated lattices sharing a common least element 0
and greatest element 1. Set B = {f € [[,cx : f is an ac-labeling}.
We define operations in B as follows. The operations A, V,-,0,1
are defined pointwise, and the operation — is defined by

f(x) —x g(x) ifforall y > x, f(y) <x g(y)
0 otherwise.

(f = g)(x) = {

The algebra B with these operation is called the poset product.

Note: Poset products of GBL-algebras are GBL-algebas.
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Conuclei and Conuclear Images

If A is a residuated lattice, a map 0: A — A is a conucleus on A
if for all x,y € A:

Q o(x) <x

@ o(o(x)) = o(x).

Q x <y implies o(x) < o(y)

Q o(x)a(y) < olxy)

9 o(x)o(1) = o(1)o(x) = o(x)
If o is a conucleus on A = (A, A, V,+,—,0,1), then
A, = (d[A], Ao, V, "+, —4,0,0(1)) is also a residuated lattice, where
XNy =0(xAy)and x =,y =0o(x = y).
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Poset products as conuclear images

Let (X, <) be a poset and {A, : x € X} is an indexed collection of
residuated lattices sharing a common least element 0 and common
greatest element 1. Set B = [[, .y Ax and define a map

O: B— B by

S(F) () f(x) iff(y)=1forally >x
X) =
if there exists y > x with f(y) # 1.

Then O is a conucleus on the direct product. The conuclear image
coincides with the poset product:

BD_HA

(X,<)
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AC-labelings Revisited

Actually, the following is quite easy to prove in this set up:

Let f € B as above. The following are equivalent.
Q f cBuo.
Q@ Of =f.
@ For all x,y € X with x <y, f(x) =0or f(y) =1.
Q Sr={xe X:f(x)¢{0,1}} is a (possibly empty) antichain
of (X, <), L = f~1(0) is a down-set of (X, <), and
Ur = f~1(1) is an up-set of (X, <).
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Embedding Into Poset Products

In a 2010 paper, Jipsen and Montagna show tha if A is a
GBL-algebra then there exists a poset product of MV-algebra
chains into which A embeds.

Turns out that this poset product naturally induces an

S4MV-algebra
(I A~ ).
xeX

This gives the missing ingredient of the GMT translation, and turns
out that the above can be upgraded to a S4;MV-algebra as well.
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Conclusions and Future Work

@ Poset products are the main engine that makes all of this
work, and further analysis of poset products in the context of
substructural modal logic is more than warranted.

@ Temporal dimension especially merits scrutiny, and this work
generalizes the work of Aguzzoli, Bianchi, and Marra on
temporal semantics for Basic Logic.

@ Overall deep connections to modal logic via partial canonical
extensions.
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Thank you!

Thank you!
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