
Algorithmic Correspondence for Relevance Logics,
Bunched Implication Logics, and Relation Algebras via

an Implementation of the Algorithm PEARL

Willem Conradie1, Valentin Goranko2 and Peter Jipsen3

1University of the Witwatersrand, South Africa
2Stockholm University, Sweden

3Chapman University, USA

Relational and Algebraic Methods in Computer Science, RAMiCS 2021
CIRM, Marseille, France

November 2-5, 2021

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 1 / 29

Relevance logic: syntax, relevance frames

The language of propositional relevance logic LR over a fixed set of
propositional variables VAR is given by

A = p | ⊥ | ⊤ | t | ∼A | (A ∧ A) | (A ∨ A) | (A ◦ A) | (A → A)

A relevance frame is a tuple F = ⟨W,O,R,∗ ⟩, where:
W is a non-empty set of states (possible worlds);
O ⊆ W is the subset of normal states;
R ⊆ W 3 is a relevant accessibility relation;
∗ : W → W is a function, called the Routley star, used to provide
semantics for ∼.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 2 / 29

Relevance logic: Routley-Meyer frames
The following binary relation ⪯ is defined in every relevance frame:

u ⪯ v iff ∃o(o ∈ O ∧ Rouv)

A Routley-Meyer frame (or RM-frame) is a relevance frame satisfying the
following conditions for all u, v,w, x, y, z ∈ W:

1 x ⪯ x
2 If x ⪯ y and Ryuv then Rxuv.
3 If x ⪯ y and Ruyv then Ruxv.
4 If x ⪯ y and Ruvx then Ruvy.

5 If x ⪯ y then y∗ ⪯ x∗.
6 O is upward closed w.r.t. ⪯,

i.e. if o ∈ O and o ⪯ o′ then
o′ ∈ O.

It follows that ⪯ is a preorder.

Adding a valuation V : VAR → P↑(W) produces a Routley-Meyer model

M = ⟨W,O,R,∗ ,V⟩

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 3 / 29

Relevance logic: Relational Semantics

Truth of a formula A in a RM-model M = ⟨W,O,R,∗ ,V⟩ at a state
u ∈ W, denoted M, u ⊩ A, is defined as follows:

M, u ⊩ p iff u ∈ V(p);
M, u ⊩ t iff u ∈ O;
M, u ⊩ ∼A iff M, u∗ ̸⊩ A;
M, u ⊩ A ∧ B iff M, u ⊩ A and M, u ⊩ B;
M, u ⊩ A ∨ B iff M, u ⊩ A or M, u ⊩ B;
M, u ⊩ A → B iff ∀v,w if Ruvw and M, v ⊩ A then M,w ⊩ B.
M, u ⊩ A ◦ B iff ∃v,w Rvwu and M, v ⊩ A and M,w ⊩ B.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 4 / 29

Relevance logic: Algebraic Semantics

A structure A = ⟨A,∧,∨, ◦,→,∼, t,⊤,⊥⟩ is called a relevant algebra
[Urquhart, 1996] if it satisfies the following conditions:

1 ⟨A,∧,∨,⊤,⊥⟩ is a bounded distributive lattice,
2 a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c),
3 (b ∨ c) ◦ a = (b ◦ a) ∨ (c ◦ a),
4 ∼(a ∨ b) = ∼a ∧ ∼b,
5 ∼(a ∧ b) = ∼a ∨ ∼b,
6 ∼⊤ = ⊥ and ∼⊥ = ⊤,
7 a ◦ ⊥ = ⊥ ◦ a = ⊥,
8 t ◦ a = a, and
9 a ◦ b ≤ c iff a ≤ b → c.

An LR-formula ϕ is valid on a relevant algebra A if the inequality t ≤ ϕ is
valid on A.
The relevance logic RL = {ϕ | t ≤ ϕ is valid in all relevant algebras}.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 5 / 29

Some well-known correspondences for Relevance Logic
[Routley, Plumwood, Meyer, Brady, 1982]

The basic relevance logic B is RL extended with A ∨ ∼A and ∼∼A.

Axiom Correspondent on RM-frames
B1. A ∧ (A → B) → B Raaa
B6. A → ((A → B) → B) Rabc ⇒ Rbac

B10. A → (B → B) Rabc ⇒ b ≤ c
B11. B → (A → B) Rabc ⇒ a ≤ c
B13. A → (B → A ∧ B) Rabc ⇒ a ≤ c & b ≤ c
B19. A ∨ B → ((A → B) → B) Rabc ⇒ (Rbac & a ≤ c)
D3. (A → ∼A) → ∼A Raa∗a
D4. (A → ∼B) → (B → ∼A) Rabc ⇒ Rac∗b∗

Extensions of B with these axioms are sound and complete with respect to
corresponding classes of RM-frames.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 6 / 29

Modal Correspondence (and Canonicity) Theory

Sahlqvist-van Benthem class (mid 1970’s)
Many, many extensions and variations subsequently.
Purely algebraic proof of canonicity of Sahlqvist-van Benthem
formulas [Jònsson, 1994]
Canonicity-via-correspondence approach [Sambin, Vacarro, 1989].
Sahlqvist theory for distributive modal logic [Gehrke, Nagahashi,
Venema, 2005]
Extension to inductive formulas [Goranko, Vakarelov, 2006]
Classical Algorithmic correspondence, SQEMA [Conradie, Goranko,
Vakarelov, 2006]
‘Unified Correspondence’ [Conradie, Palmigiano 2012, 2019],
[Conradie, Ghilardi, Palmigiano, 2014]

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 7 / 29

Relevant Correspondence (and Canonicity) Theory
“Correspondence theory in the case of modal and intuitionistic logic has
been extensively studied, but the analogous theory for the case of relevant
logics is surprisingly neglected.” – Urquhart, 1996
Precursors:

A Sahlqvist theorem for relevant modal logics [Seki, 2003]
A Sahlqvist theorem for substructural logic [Suzuki, 2013]
On Sahlqvist formulas in relevant logic [Badia, 2018]

Current work:
Within the Unified Correspondence framework:

Definition of Inductive and Sahlqvist formulas for Relevance Logic
A calculus of rewrite rules (specializing ALBA)

PEARL algorithm = Calculus + Relevance Logic-specific translation
+ simplification
Implementation of PEARL

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 8 / 29

The PEARL algorithm

PEARL = Propositional variable Elimination Algorithm for Relevance Logic

Extended language:

ϕ = p | i | m | ⊤ | ⊥ | t | ∼ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ ◦ ϕ) | (ϕ→ ϕ) |
∼♭ϕ | ∼♯ϕ | (ϕ−�ϕ) | (ϕ⇒ ϕ) | (ϕ ↪→ ϕ)

where p ∈ VAR, i ∈ NOM and m ∈ CNOM.

Applies a calculus of rewrite rules to eliminate propositional variables in
favor of nominals and co-nominals.

If successful, translates the result into first-order logic and simplifies.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 9 / 29

PEARL calculus: Ackermann-rules

α ≤ p, ∆(p) =⇒ γ(p) ≤ β(p)
(RAR)

∆(α/p) =⇒ γ(α/p) ≤ β(α/p)

p ≤ α, Γ(p) =⇒ β(p) ≤ γ(p)
(LAR)

Γ(α/p) =⇒ β(α/p) ≤ γ(α/p)

The Right Ackermann-rule (RAR) and Left Ackermann-rule (LAR) are
subject to the following conditions:

p does not occur in α,
β is positive in p,
γ is negative in p,

Γ is negative in p,
∆ is positive in p,

“positive in p” means all occurrences of p have an even number of ∼,
_ → ϕ, _ ⇒ ϕ in their scope. “negative in p” means the opposite.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 10 / 29

PEARL calculus: Monotone variable elimination rules

Γ(p) =⇒ γ(p) ≤ β(p)
(⊥)

Γ(⊤/p) =⇒ γ(⊥/p) ≤ β(⊥/p)
∆(p) =⇒ β(p) ≤ γ(p)

(⊤)
∆(⊥/p) =⇒ β(⊤/p) ≤ γ(⊤/p)

provided that β(p) and Γ are positive in p, while γ(p) and ∆(p) are
negative in p.

For example A ≤ (∼A → B) rewrites to A ≤ (∼A → ⊥).

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 11 / 29

PEARL calculus: Approximation rules (sample)

Γ =⇒ ϕ ≤ ψ

j ≤ ϕ, ψ ≤ m, Γ =⇒ j ≤ m

where j is a nominal and m is a co-nominal not occurring in the premise.

χ→ ϕ ≤ m, Γ =⇒ α ≤ β
(→Appr-Left)

j ≤ χ, j → ϕ ≤ m, Γ =⇒ α ≤ β

i ≤ χ ◦ ϕ, Γ =⇒ α ≤ β
(◦Appr-Left)

j ≤ χ, i ≤ j ◦ ϕ, Γ =⇒ α ≤ β

∼ϕ ≤ m, Γ =⇒ α ≤ β
(∼Appr-Left)

ϕ ≤ n, ∼n ≤ m, Γ =⇒ α ≤ β

where j a nominal and n is a co-nominal not appearing in the premises.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 12 / 29

PEARL calculus: Residuation rules

ϕ ≤ χ ∨ ψ, Γ =⇒ α ≤ β
(∨Res)

ϕ−�χ ≤ ψ, Γ =⇒ α ≤ β

ϕ ∧ χ ≤ ψ, Γ =⇒ α ≤ β
(∧Res)

ϕ ≤ χ⇒ ψ, Γ =⇒ α ≤ β

ϕ ≤ χ→ ψ, Γ =⇒ α ≤ β
(→Res)

ϕ ◦ χ ≤ ψ, Γ =⇒ α ≤ β

ψ ≤ ϕ ↪→ χ, Γ =⇒ α ≤ β
(↪→Res)

ϕ ◦ ψ ≤ χ, Γ =⇒ α ≤ β

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 13 / 29

PEARL calculus: Adjunction rules

ϕ ∨ χ ≤ ψ, Γ =⇒ α ≤ β
(∨Adj)

ϕ ≤ ψ, χ ≤ ψ, Γ =⇒ α ≤ β

ψ ≤ ϕ ∧ χ, Γ =⇒ α ≤ β
(∧Adj)

ψ ≤ ϕ, ψ ≤ χ, Γ =⇒ α ≤ β

∼ϕ ≤ ψ, Γ =⇒ α ≤ β
(∼Left-Adj)

∼♭ ψ ≤ ϕ, Γ =⇒ α ≤ β

ϕ ≤ ∼ψ, Γ =⇒ α ≤ β
(∼Right-Adj)

ψ ≤ ∼♯ ϕ, Γ =⇒ α ≤ β

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 14 / 29

PEARL for bunched implication algebras and RAs

A bunched implication algebra A = ⟨A,∧,∨,⊤,⊥, ◦, t,→,⇒⟩ such that
⟨A,∧,∨,⊥,⊤⟩ is a bounded (distributive) lattice, a ◦ b ≤ c iff a ≤ b → c,
a ∧ b ≤ c iff a ≤ b ⇒ c, and ⟨A, ◦, t⟩ is a commutative monoid.

The frames of bunched implication algebras are relevant frames without ∗.

A relation algebra is a relevant algebra expanded with a Boolean
negation ¬ such that ⟨A, ◦, t⟩ is a monoid, a → b = ∼(∼b ◦ a), and
¬∼(a ◦ b) = ¬∼b ◦ ¬∼a.

The term ¬∼a is the converse of a (usually written a⌣).

The relevant frames of relation algebras are also called atom structures,
and the Boolean negation ensures that the partial order is an antichain.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 15 / 29

Implementation of PEARL

The input is a LATEX string using the standard syntax of relevance logic
expressions.

Intuitionistic implication ⇒, coimplication −� , the right residual ↪→ of ◦,
and the adjoints ∼♯ and ∼♭ can also appear in an input formula.

The expression is parsed with a simple top-down Pratt parser [1973] using
standard rules of precedence.

For well-formed formulas, an abstract syntax tree (AST) based on Python
dictionaries and lists of arguments is created for each formula.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 16 / 29

Parsing example

E.g., the formula A = “p → q∧t” is translated to the AST representation

A={"id":"\to","a":[
{"id":"p","a":[]},
{"id":"\\land","a":[

{"id":"q","a":[]},
{"id":"\mathbf t","a":[]}

]}
]}

The implication symbol → is referenced by A.id

and the two arguments are A.a[0] and A.a[1].

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 17 / 29

Preprocessing phase

Five short recursive Python functions are used to transform the AST
representation step-by-step according to the specific groups of PEARL
transformation rules.

The function preprocess(st) takes a LATEX string st as input and parses
it, producing an AST A.

If the formula A is not well-formed, an error-string is returned.

If it has a top-level → symbol, it is replaced with a ≤ to turn the formula
into an inequality, and otherwise the equivalent inequality t ≤ A is
constructed.

Subsequently the splitting rules and monotonicity rules are applied and the
resulting list of inequalities is returned.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 18 / 29

Preprocessing example

For example, with r"p\to q\land\mathbf t" as input, the formula is
parsed, rewritten as p ≤ q∧t

The splitting rules produce the list [p ≤ q, p ≤ t] and monotonicity returns
[⊤ ≤ ⊥,⊤ ≤ t].

The function approximate(As) takes this list as input, and applies the
first approximation rule to each formula, followed by all possible left and
right approximations interleaved with further applications of the splitting
rule.

The result is a list of quasi-equations that always have conclusion i ≤ m
and premises that are irreducible with respect to the approximation and
splitting rules.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 19 / 29

Elimination phase

The function eliminate(As) then attempts to apply the Ackermann-rules
to each quasi-equation by selecting each variable, first with positive
polarity and, if that does not succeed, then with negative polarity.

Backtracking is used to ensure that all variables are tried in all possible
orders.

If for some quasi-equations none of the variable orders allow all variables
to be eliminated, then the function reports this result.

On the other hand, if for each quasi-equations some variable order
succeeds to eliminate all formula variables then the resulting list of pure
quasi-equations (i.e., containing no formula variables, but only nominals or
co-nominals) is returned.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 20 / 29

Simplification phase

Since these pure quasi-equations contain redundant premises, the function
simplify(As) is used to eliminate them, and to also apply the left and
right simplification rules.

Finally the variant of the standard translation is applied to the pure
quasi-equations and produces a first-order formula on the Routley-Meyer
frames.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 21 / 29

Translation rules (Part 1)
Tr(i ≤ j) = xj ⪯ xi

Tr(i ≤ m) = xi ̸⪯ ym

Tr(i ≤ t) = Oxi

Tr(i ≤ ⊥) = False
Tr(i ≤ ⊤) = True
Tr(i ≤ ∼m) = x∗i ⪯ ym

Tr(i ≤ ∼j) = xj ̸⪯ x∗i
Tr(i ≤ ∼A) = ∀xj(Tr(j ≤ A) → xj ̸⪯ x∗i)
Tr(i ≤ j ◦ k) = Rxjxkxi

Tr(i ≤ j ◦ B) = ∃xk(Tr(k ≤ B) ∧ Rxjxkxi)

Tr(i ≤ A ◦ B) = ∃xj(Tr(j ≤ A) ∧ Tr(i ≤ j◦B))

Tr(i ≤ A → B) = Tr(i ◦ A ≤ B)

Tr(i ≤ A ↪→ B) = Tr(A ◦ i ≤ B)

Tr(i ≤ A ⇒ B) = Tr(i ∧ A ≤ B)

Tr(i ≤ A∧B)=Tr(i ≤ A) ∧ Tr(i ≤ B)

Tr(i ≤ A∨B)=Tr(i ≤ A) ∨ Tr(i ≤ B)

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 22 / 29

Translation rules (Part 2)
Tr(n ≤ m) = ym ⪯ yn

Tr(t ≤ m) = ¬Oym

Tr(⊥ ≤ m) = True
Tr(⊤ ≤ m) = False
Tr(∼n ≤ m) = y∗m ̸⪯ yn

Tr(∼j ≤ m) = xj ⪯ y∗m
Tr(∼A ≤ m) = ∃xj(Tr(j ≤ A) ∧ xj ⪯ y∗m)

Tr(i ◦ j ≤ m) = ¬Rxixjym

Tr(i ◦ B ≤ m) = ∀xj(Tr(j ≤ B) → ¬Rxixjym)

Tr(A ◦ B ≤ m) = ∀xi(Tr(i ≤ A) ∧ Tr(i ◦ B ≤ m)

Tr(A ⇒ B ≤ m) = ∀xi(Tr(i ≤ A ⇒ B) → Tr(i ≤ m))

Tr(A −� B ≤ m) = Tr(A ≤ B ∨ m)

Tr(A ∧ B ≤ m) = Tr(A ≤ m) ∨ Tr(B ≤ m)

Tr(A ∨ B ≤ m) = Tr(A ≤ m) ∧ Tr(B ≤ m)

Tr(A ≤ B) = ∀xj(Tr(j ≤ A) → Tr(j ≤ B))

The translation Tr is not restricted to pure quasi-inequalities and can be
applied to arbitrary pure formulas.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 23 / 29

The Python code can be used in any Jupyter notebook, with the output
displayed in standard mathematical notation.

No special installation is needed to use the program in a personal Jupyter
notebook or in a public cloud-based notebook such as Colab.google.com,
and the output can be pasted into standard LATEX documents.

Moreover the program can be easily extended to handle the syntax of
other suitable logics and lattice-ordered algebras.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 24 / 29

Try it out at in a Google Colab notebook

The Python code is available at https://github.com/jipsen/PEARL

It can also be copied and used directly in a browser at
https://colab.research.google.com/drive/
1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 25 / 29

https://github.com/jipsen/PEARL
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing
https://colab.research.google.com/drive/1p0PTkmyq7vTWgYDxCTFHVRwjaLeT45uX?usp=sharing

Two examples of output from the PEARL implementation

Input: pearl((A → B) ∧ (B → C) → (A → C), "latex")

Translate to (list of) initial inequalit(ies):
[(A → B) ∧ (B → C) ≤ A → C]

Approximation phase:
i ≤ A → B, i ≤ B → C, j1 → n1 ≤ m, C ≤ n1, j1 ≤ A =⇒ i ≤ m

Order of variables during the elimination phase: [′+A′,′+C′,′+B′]

Elimination phase: j1 → n1 ≤ m, i ◦ (i ◦ j1) ≤ n1 =⇒ i ≤ m

Apply simplification rules: i ◦ (i ◦ j1) ≤ n1 =⇒ i ≤ j1 → n1

Apply Tr rules: ∀x2(Rx0x1x2 =⇒ ¬(Rx0x2y1)) =⇒ ¬(Rx0x1y1)

Contrapose and simplify: Rx0x1y1 =⇒ ∃x2(Rx0x1x2 ∧ Rx0x2y1)

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 26 / 29

Second example

Input command: pearl(A → (∼A → B), "latex")

Initial inequality after monotone variable elimination: [A ≤ ∼A → ⊥]

Approximation phase:
i ≤ A, j1 → n1 ≤ m, ⊥ ≤ n1, j1 ≤ ∼n2, A ≤ n2 =⇒ i ≤ m

Elimination phase:
j1 → n1 ≤ m, ⊥ ≤ n1, j1 ≤ ∼n2, i ≤ n2 =⇒ i ≤ m

Apply simplification rules: j1 ≤ ∼n2 =⇒ n2 ≤ j1 → n1

Apply Tr rules: x∗1 ⪯ y2 =⇒ ∀x2(Rx2x1y1 =⇒ x2 ⪯ y2)

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 27 / 29

Some References
V. R. Pratt, P. C. Fischer and J. D. Ullman: Top Down Operator Precedence, ACM
Symposium on Principles of Programming Languages, Boston, MA, 41-51, ACM Press,
1973.

Jónsson, B., 1994. On the canonicity of Sahlqvist identities. Studia Logica, 53(4), 473-491.

Sambin, G. and Vaccaro, V., 1989. A new proof of Sahlqvist’s theorem on modal
definability and completeness. The Journal of Symbolic Logic, 54(3), 992-999.

Goranko, V. and Vakarelov, D., 2006. Elementary canonical formulae: extending
Sahlqvist’s theorem. Annals of Pure and Applied Logic, 141(1-2), 180-217.

Conradie, W., Goranko, V. and Vakarelov, D., 2006. Algorithmic correspondence and
completeness in modal logic. I. The core algorithm SQEMA. Logical Methods in Computer
Science, 2(1), 1-26.

Conradie, W., Ghilardi, S. and Palmigiano, A., 2014. Unified correspondence. In Johan van
Benthem on logic and information dynamics, Springer, 933-975.

Conradie, W. and Palmigiano, A., 2012. Algorithmic correspondence and canonicity for
distributive modal logic. Annals of Pure and Applied Logic, 163(3), 338-376.

Conradie, W. and Palmigiano, A., 2019. Algorithmic correspondence and canonicity for
non-distributive logics. Annals of Pure and Applied Logic, 170(9), 923-974.

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 28 / 29

Some References II
Badia, G., 2018. On Sahlqvist formulas in relevant logic. Journal of philosophical logic,
47(4), 673-691.

Seki, T., 2003. A Sahlqvist theorem for relevant modal logics. Studia Logica, 73(3),
383-411.

Suzuki, T., 2013. A Sahlqvist theorem for substructural logic. Rev. Symb. Log., 6(2),
383-411.

Urquhart, A., 1996. Duality for algebras of relevant logics. Studia Logica, 56(1), 263-276.

THANKS!

W. Conradie, V. Goranko and P. Jipsen Correspondence theory for relevance logics Nov 2, 2021 29 / 29

	Correspondence Theory
	Implementation

