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Quantified Equality Constraints

(N; =)

∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs ).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
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What is the complexity of QCSP(N; x = y → y = z)?

I QCSP(N; x = y → y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]

QCSP(N; x = y → y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R1, . . . ,Rs are definable by some Boolean
combination of atoms of the form (x = y). Then
QCSP(N;R1, . . . ,Rs) is either tractable, NP-complete, or
PSpace-complete.
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Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?
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{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
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where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.



Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a formula (R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether the formula is satisfiable.
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Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

I CSP(Γ) is solvable in polynomial time (tractable) if there
exists a weak near-unanimity operation preserving Γ,

I CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

w(y , x , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , x , . . . , x , y)

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz , x + y + z , 0,min(x , y), . . .
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Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

Are there any other complexity classes?
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QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?
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Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using quantified
conjunctive formulas

R(x1, . . . , xn) = ∀y1∃y2∀y3∃y4 . . .R1(. . . ) ∧ · · · ∧ Rs(. . . ).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin, 2003)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1.

I The complexity of QCSP(Γ) depends only on surjective
polymorphisms of Γ.
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Π2-restriction of QCSP.

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I We need to check that for all evaluations of x1, . . . , xt there
exists a solution of the CSP (R1(. . . ) ∧ · · · ∧ Rs(. . . )).

I How many tuples is it sufficient to check?
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PGP vs EGP

For an algebra (A;F ) (a set of operations F on a set A)
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1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
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to generate {0, 1}n.
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all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property
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From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . . ) ∧ · · · ∧ Rs(. . . )) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . . ) ∧ · · · ∧ Rs(. . . ) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))
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From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0
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From PSpace to NP

Theorem

*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.
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Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is in P, if Pol(Γ) has PGP and WNU

I is NP-complete, if Pol(Γ) has PGP and has no WNU

I is PSPACE-complete, if Pol(Γ) has no PGP

P

NP

PSPACE
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2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S ( An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.
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