
Quantified Constraint Satisfaction Problem:
towards the classification of complexity

Dmitriy Zhuk
joint with Barnaby Martin

Lomonosov Moscow State University
Higher School of Economics

19th International Conference on Relational and Algebraic
Methods in Computer Science RAMICS 2021

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No 771005)

Quantified Equality Constraints

(N; =)

∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4),

true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true

∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4),

false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.

I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen
2007].

I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,
Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].

I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,
Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question

Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question

Open since 2007
Accessible to anyone

Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007

Accessible to anyone

Easy to Formulate

Quantified Equality Constraints

(N; =)
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N;R)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R(. . .) ∧ · · · ∧ R(. . .).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
I QCSP(N; x = y ∨ z = t) is NP-complete [Bodirsky, Chen

2007].
I QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky,

Chen 2007].

What is the complexity of QCSP(N; x = y → y = z)?

A concrete question Open since 2007
Accessible to anyone Easy to Formulate

Quantified Equality Constraints

What is the complexity of QCSP(N; x = y → y = z)?

I QCSP(N; x = y → y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]

QCSP(N; x = y → y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R1, . . . ,Rs are definable by some Boolean
combination of atoms of the form (x = y). Then
QCSP(N;R1, . . . ,Rs) is either tractable, NP-complete, or
PSpace-complete.

Quantified Equality Constraints

What is the complexity of QCSP(N; x = y → y = z)?

I QCSP(N; x = y → y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]

QCSP(N; x = y → y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R1, . . . ,Rs are definable by some Boolean
combination of atoms of the form (x = y). Then
QCSP(N;R1, . . . ,Rs) is either tractable, NP-complete, or
PSpace-complete.

Quantified Equality Constraints

What is the complexity of QCSP(N; x = y → y = z)?

I QCSP(N; x = y → y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]

QCSP(N; x = y → y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R1, . . . ,Rs are definable by some Boolean
combination of atoms of the form (x = y). Then
QCSP(N;R1, . . . ,Rs) is either tractable, NP-complete, or
PSpace-complete.

Quantified Equality Constraints

What is the complexity of QCSP(N; x = y → y = z)?

I QCSP(N; x = y → y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]

QCSP(N; x = y → y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R1, . . . ,Rs are definable by some Boolean
combination of atoms of the form (x = y). Then
QCSP(N;R1, . . . ,Rs) is either tractable, NP-complete, or
PSpace-complete.

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}.

QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2),

true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y),

false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2),

true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x 6= y}. QCSP instances:

∀x∃y1∃y2(x 6= y1 ∧ x 6= y2 ∧ y1 6= y2), true

∀x1∀x2∀x3∃y(x1 6= y ∧ x2 6= y ∧ x3 6= y), false

∀x1∃y1∀x2∃y2(x1 6= y1 ∧ y1 6= y2 ∧ y2 6= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧}

{∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨}

?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∨ · · · ∨ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Constraint Satisfaction Problem:
Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃,∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Given a sentence ∃y1 . . . ∃yt((R1(. . .) ∨ R2(. . .)) ∧ R3(. . .)),
where R1, . . . ,R3 ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃, ∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Given a sentence ∃y1∀x1 . . . ∃yt∀xt((R1(. . .) ∨ R2(. . .)) ∧ R3(. . .)),
where R1, . . . ,R3 ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃, ∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Given a sentence
∃y1∀x1 . . . ∃yt∀xt((¬R1(. . .) ∨ R2(. . .)) ∧ ¬R3(. . .)),
where R1, . . . ,R3 ∈ Γ.
Decide whether it holds.

Σ dual-Σ Classification Complexity Classes

{∃, ∀,∧} {∃,∀,∨} ?????????? ??????????

{∃,∨} {∀,∧} Trivial L

{∃,∧} {∀,∨} CSP Dichotomy P, NP-complete

{∃,∧,∨} {∀,∧,∨} Trivial iff L
the core has NP-complete
one element

{∃, ∀,∧,∨} Positive equality P, NP-complete
free tetrachotomy co-NP-complete

PSPACE-complete

{∃,∀,∧,∨,¬} Trivial iff L
Γ is trivial PSPACE-complete

Quantified Constraint Satisfaction Problem:
Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a formula (R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether the formula is satisfiable.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a formula (R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether the formula is satisfiable.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly f ∈ Pol(R))

if for all

a1
1
...
as1

 , . . . ,

a1
n
...
asn

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as1 . . . asn

 =

f (a1
1, . . . , a

1
n)

...
f (as1, . . . , a

s
n)

 ∈ R

f preserves Γ (equivalently f ∈ Pol(Γ)) if f preserves every R ∈ Γ.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

An operation f preserves a relation R,

(equivalently, f is a polymorphism of R, shortly f ∈ Pol(R))

if for all

a1
1
...
as1

 , . . . ,

a1
n
...
asn

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as1 . . . asn

 =

f (a1
1, . . . , a

1
n)

...
f (as1, . . . , a

s
n)

 ∈ R

f preserves Γ (equivalently f ∈ Pol(Γ)) if f preserves every R ∈ Γ.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly f ∈ Pol(R))

if for all

a1
1
...
as1

 , . . . ,

a1
n
...
asn

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as1 . . . asn

 =

f (a1
1, . . . , a

1
n)

...
f (as1, . . . , a

s
n)

 ∈ R

f preserves Γ (equivalently f ∈ Pol(Γ)) if f preserves every R ∈ Γ.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly f ∈ Pol(R))

if for all

a1
1
...
as1

 , . . . ,

a1
n
...
asn

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as1 . . . asn

 =

f (a1
1, . . . , a

1
n)

...
f (as1, . . . , a

s
n)

 ∈ R

f preserves Γ (equivalently f ∈ Pol(Γ)) if f preserves every R ∈ Γ.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R, shortly f ∈ Pol(R))

if for all

a1
1
...
as1

 , . . . ,

a1
n
...
asn

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as1 . . . asn

 =

f (a1
1, . . . , a

1
n)

...
f (as1, . . . , a

s
n)

 ∈ R

f preserves Γ (equivalently f ∈ Pol(Γ)) if f preserves every R ∈ Γ.

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

I CSP(Γ) is solvable in polynomial time (tractable) if there
exists a weak near-unanimity operation preserving Γ,

I CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

w(y , x , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , x , . . . , x , y)

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz , x + y + z , 0,min(x , y), . . .

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

I CSP(Γ) is solvable in polynomial time (tractable) if there
exists a weak near-unanimity operation preserving Γ,

I CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

w(y , x , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , x , . . . , x , y)

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz , x + y + z , 0,min(x , y), . . .

Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

I CSP(Γ) is solvable in polynomial time (tractable) if there
exists a weak near-unanimity operation preserving Γ,

I CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

w(y , x , x , . . . , x) = w(x , y , x , . . . , x) = · · · = w(x , x , . . . , x , y)

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz , x + y + z , 0,min(x , y), . . .

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ).

QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ). QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

Few facts about QCSP

I If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

I If Γ consists of linear equations in a finite field then QCSP(Γ)
can be solved in polynomial time (tractable).

I For A′ = A ∪ {∗}, Γ′ an extension of Γ to A′, QCSP(Γ′) is
equivalent to CSP(Γ). QCSP(Γ) can be NP-complete.

Are there any other complexity classes?

P

NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

QCSP classifications

I Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

I Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

I Various graphs Dichotomies and trichotomies P, NP-complete,
Pspace-complete. (Madelaine, M. 2006, 2011, 2013)

I Structures with 2-semilattice polymorphism. Dichotomy P,
Pspace-complete. (Chen 2004 + Börner et al. 2009.)

I Semicomplete digraphs. Trichotomy. P, NP-complete,
Pspace-complete. (Dapic et al. 2014.)

Are there any other complexity classes?

P NP

PSPACE

Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using quantified
conjunctive formulas

R(x1, . . . , xn) = ∀y1∃y2∀y3∃y4 . . .R1(. . .) ∧ · · · ∧ Rs(. . .).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin, 2003)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1.

I The complexity of QCSP(Γ) depends only on surjective
polymorphisms of Γ.

Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using quantified
conjunctive formulas

R(x1, . . . , xn) = ∀y1∃y2∀y3∃y4 . . .R1(. . .) ∧ · · · ∧ Rs(. . .).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin, 2003)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1.

I The complexity of QCSP(Γ) depends only on surjective
polymorphisms of Γ.

Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using quantified
conjunctive formulas

R(x1, . . . , xn) = ∀y1∃y2∀y3∃y4 . . .R1(. . .) ∧ · · · ∧ Rs(. . .).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin, 2003)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1.

I The complexity of QCSP(Γ) depends only on surjective
polymorphisms of Γ.

Surjective polymorphisms

Observation

Suppose each relation of Γ1 is definable from Γ2 using primitive
positive formulas

R(x1, . . . , xn) = ∃y1∃y2∃y3∃y4 . . .R1(. . .) ∧ · · · ∧ Rs(. . .).

Then QCSP(Γ1) is polynomially reducible to QCSP(Γ2).

Theorem (Galois Correspondence, Börner, Bulatov, Chen,
Jeavons, and Krokhin, 2003)

Γ1 is definable by quantified conjunctive formulas over Γ2 IFF
each surjective polymorphism of Γ2 is a polymorphism of Γ1.

I The complexity of QCSP(Γ) depends only on surjective
polymorphisms of Γ.

Two questions

I What makes QCSP(Γ) easy?

I What makes QCSP(Γ) hard?

Two questions

I What makes QCSP(Γ) easy?

I What makes QCSP(Γ) hard?

Π2-restriction of QCSP.

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I We need to check that for all evaluations of x1, . . . , xt there
exists a solution of the CSP (R1(. . .) ∧ · · · ∧ Rs(. . .)).

I How many tuples is it sufficient to check?

Π2-restriction of QCSP.

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I We need to check that for all evaluations of x1, . . . , xt there
exists a solution of the CSP (R1(. . .) ∧ · · · ∧ Rs(. . .)).

I How many tuples is it sufficient to check?

Π2-restriction of QCSP.

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I We need to check that for all evaluations of x1, . . . , xt there
exists a solution of the CSP (R1(. . .) ∧ · · · ∧ Rs(. . .)).

I How many tuples is it sufficient to check?

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

Examples

1. A = {0, 1}, F = {x ∨ y}. dF (n) = n + 1. It is sufficient to
have (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0) for any position of 1
to generate {0, 1}n.

2. A = {0, 1}, F = {¬x}. dF (n) = 2n−1. It is sufficient to have
all tuples starting with 0 to generate {0, 1}n.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (ai , ai+1) with ai 6= ai+1 is a switch in a tuple (a1, . . . , an).
(0, 0, 0, 1, 2, 2, 0, 0, 0, 0) has 3 switches,
(3, 3, 3, 4, 3, 3, 3, 3, 3, 3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each An is
generated by all tuples with at most k switches.

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (ai , ai+1) with ai 6= ai+1 is a switch in a tuple (a1, . . . , an).
(0, 0, 0, 1, 2, 2, 0, 0, 0, 0) has 3 switches,
(3, 3, 3, 4, 3, 3, 3, 3, 3, 3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each An is
generated by all tuples with at most k switches.

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (ai , ai+1) with ai 6= ai+1 is a switch in a tuple (a1, . . . , an).
(0, 0, 0, 1, 2, 2, 0, 0, 0, 0) has 3 switches,
(3, 3, 3, 4, 3, 3, 3, 3, 3, 3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each An is
generated by all tuples with at most k switches.

PGP vs EGP

For an algebra (A;F) (a set of operations F on a set A)
dF (n) is the minimal size of a generating set of An.

I If dF (n) is restricted by a polynomial in n, then the algebra
has the Polynomially Generated Powers (PGP) property

I If dF (n) is exponential in n, then the algebra
has the Exponentially Generated Powers (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Pair (ai , ai+1) with ai 6= ai+1 is a switch in a tuple (a1, . . . , an).
(0, 0, 0, 1, 2, 2, 0, 0, 0, 0) has 3 switches,
(3, 3, 3, 4, 3, 3, 3, 3, 3, 3) has 2 switches.

Theorem[Zhuk, 2015]

A finite algebra A has PGP IFF there exists k such that each An is
generated by all tuples with at most k switches.

From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . .) ∧ · · · ∧ Rs(. . .)) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . .) ∧ · · · ∧ Rs(. . .) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))

From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . .) ∧ · · · ∧ Rs(. . .)) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . .) ∧ · · · ∧ Rs(. . .) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))

From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . .) ∧ · · · ∧ Rs(. . .)) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . .) ∧ · · · ∧ Rs(. . .) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))

From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . .) ∧ · · · ∧ Rs(. . .)) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof:

the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . .) ∧ · · · ∧ Rs(. . .) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))

From Π2 to NP

QCSPΠ2(Γ):

Given a sentence ∀x1 . . . ∀xt∃y1 . . . ∃yq(R1(. . .) ∧ · · · ∧ Rs(. . .)),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Example

If x ∨ y preserves Γ then it is sufficient to check that
(R1(. . .) ∧ · · · ∧ Rs(. . .)) is satisfiable for (x1, . . . , xt) = (0, . . . , 0)
and (x1, . . . , xi−1, xi , xi+1, . . . , xt) = (0, . . . , 0, 1, 0, . . . , 0) for ∀i .

Observation

If Pol(Γ) has PGP, then QCSPΠ2(Γ) can be polynomially reduced
to CSP(Γ ∪ {x = a | a ∈ A}).

Proof: the instance is equivalent to the CSP instance∧
(a1,...,at) with

at most k switches

(R1(. . .) ∧ · · · ∧ Rs(. . .) ∧ (x1 = a1) ∧ · · · ∧ (xt = at))

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ

m
∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|

I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ

m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

∃y∀x Φ
m

∀x1∀x2 . . . ∀x |A|∃y Φ1 ∧ Φ2 ∧ · · · ∧ Φ|A|
I Φi is obtained from Φ by renaming x by x i

∃y1∀x1 . . . ∃yt∀xt Φ
m

1 1 1 . . . 1 1 1 1 2 . . . 2 . . . 0 0 0 0 . . . 0

∀x1
1 . . . ∀x

|A|
1 ∀x1

2 . . . ∀x
|A|2
2 . . . ∀x1

t . . . ∀x
|A|t
t

∃y1∃y1
2 . . . ∃y

|A|
2 . . . ∃y1

t . . . ∃y
|A|t−1

t Φ1 ∧ Φ2 ∧ · · · ∧ Φq

I For the PGP case it is sufficient to check tuples with at most
k switches

I We keep variables with the switches

I We assign x1
1 = · · · = x

|A|
1 = 1, . . . , x1

t = · · · = x
|A|t
t = 0

From PSpace to NP

Theorem

*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.

From PSpace to NP

Theorem

*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.

From PSpace to NP

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.

From PSpace to NP

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.

From PSpace to NP

Theorem*

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is polynomially reducible
to CSP(Γ ∪ {x = a | a ∈ A}).

* For Γ containing all constants relations this was shown earlier by
Chen, Martin, Carvalho, and Madelaine.

Corollary 1

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is in NP.

Corollary 2

Suppose Pol(Γ) has PGP. Then QCSP(Γ) is either tractable, or
NP-complete.

Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is in P, if Pol(Γ) has PGP and WNU

I is NP-complete, if Pol(Γ) has PGP and has no WNU

I is PSPACE-complete, if Pol(Γ) has no PGP

P

NP

PSPACE

Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is in P, if Pol(Γ) has PGP and WNU

I is NP-complete, if Pol(Γ) has PGP and has no WNU

I is PSPACE-complete, if Pol(Γ) has no PGP

P

NP

PSPACE

Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is in P, if Pol(Γ) has PGP and WNU

I is NP-complete, if Pol(Γ) has PGP and has no WNU

I is PSPACE-complete, if Pol(Γ) has no PGP

P

NP

PSPACE

Chen Conjecture

Chen Conjecture (QCSP Trichotomy Conjecture)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is in P, if Pol(Γ) has PGP and WNU

I is NP-complete, if Pol(Γ) has PGP and has no WNU

I is PSPACE-complete, if Pol(Γ) has no PGP

P

NP

PSPACE

Chen Conjecture

Weak Chen Conjecture

If Pol(Γ) has EGP, then QCSP(Γ) is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If Pol(Γ) has EGP then we can define (encode) by a positive
primitive formula the compliment to 3-CNF.

2. If this definition is efficiently computable, then QCSP(Γ) is
coNP-hard.

Lemma (Classification for the conservative case) [Zhuk,
Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

Chen Conjecture

Weak Chen Conjecture

If Pol(Γ) has EGP, then QCSP(Γ) is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If Pol(Γ) has EGP then we can define (encode) by a positive
primitive formula the compliment to 3-CNF.

2. If this definition is efficiently computable, then QCSP(Γ) is
coNP-hard.

Lemma (Classification for the conservative case) [Zhuk,
Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

Chen Conjecture

Weak Chen Conjecture

If Pol(Γ) has EGP, then QCSP(Γ) is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If Pol(Γ) has EGP then we can define (encode) by a positive
primitive formula the compliment to 3-CNF.

2. If this definition is efficiently computable, then QCSP(Γ) is
coNP-hard.

Lemma (Classification for the conservative case) [Zhuk,
Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

Chen Conjecture

Weak Chen Conjecture

If Pol(Γ) has EGP, then QCSP(Γ) is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If Pol(Γ) has EGP then we can define (encode) by a positive
primitive formula the compliment to 3-CNF.

2. If this definition is efficiently computable, then QCSP(Γ) is
coNP-hard.

Lemma (Classification for the conservative case) [Zhuk,
Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

Chen Conjecture

Weak Chen Conjecture

If Pol(Γ) has EGP, then QCSP(Γ) is coNP-hard.

Almost a proof of Weak Chen Conjecture

1. If Pol(Γ) has EGP then we can define (encode) by a positive
primitive formula the compliment to 3-CNF.

2. If this definition is efficiently computable, then QCSP(Γ) is
coNP-hard.

Lemma (Classification for the conservative case) [Zhuk,
Martin, 2018]

Chen Conjecture holds for Γ containing all unary relations.

QCSP Monsters

I there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Monsters
I there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Monsters
I there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Monsters
I there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Monsters
I there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Monsters
I there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

I there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

I there exists Γ on a 10-element domain such that QCSP(Γ) is
ΘP

2 -complete.

I there exists Γ having EGP such that QCSP(Γ) is in P.

Are there any other monsters???

P

NP

PSPACE
coNP

DP

ΘP
2

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

I in P, or

I NP-complete, or

I coNP-complete, or

I PSPACE-complete.

P

NP
coNP

PSPACE

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

I in P, or

I NP-complete, or

I coNP-complete, or

I PSPACE-complete.

P

NP
coNP

PSPACE

Classification for a 3-element-domain

Theorem (Classification for a 3-element domain)

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

I in P, or

I NP-complete, or

I coNP-complete, or

I PSPACE-complete.

P

NP
coNP

PSPACE

Two questions

I What makes QCSP(Γ) easy?

I What makes QCSP(Γ) hard?

Two questions

I What makes QCSP(Γ) easy?

I What makes QCSP(Γ) hard?

Two questions

I What makes QCSP(Γ) easy?

I What makes QCSP(Γ) PSpace-hard?

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }

, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

What makes QCSP(Γ) PSpace-hard?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x 6= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2

x1 x2 x3

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3

+ −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3

+ −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3

x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

How to prove PSpace-hardness?

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2

x3

x1

x2

x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

m

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2

ΠP
2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Theorem (ΠP
2 vs PSpace)

Suppose Γ contains {x = a | a ∈ A}. Then QCSP(Γ)

I is PSpace-hard if there exists a reflexive relation S (An and
a nontrivial equivalence relation σ on D ⊆ A such that
R(y1, y2, x1, . . . , xn) = σ(y1, y2) ∨ S(x1, . . . , xn) is definable by
a positive primitive formula over Γ

I in ΠP
2 otherwise.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard

(proved for Γ containing {x = a | a ∈ A})

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy to prove

1. P vs NP-hard (under Turing reductions).

2. NP vs coNP-hard

3. coNP vs NP-hard

4. NP ∪ coNP vs DP-hard

5. DP vs ΘP
2 -hard

6. ΘP
2 vs ΠP

2 -hard

7. ΠP
2 vs PSpace-hard (proved for Γ containing {x = a | a ∈ A})

Thank you for your attention

Thank you for your attention

Thank you for your attention

Thank you for your attention

	Quantified Equality Constraints
	Introduction
	Bigger picture
	Known Results
	PGP Reduction
	Demise of Chen Conjecture
	PSpace-hardness
	Missing Monster

