lr-Multisemigroups, Modal Quantales and the Origin of Locality

Cameron Calk ¹ Uli Fahrenberg ¹ Christian Johansen ² Georg Struth ³ Krzysztof Ziemiański ⁴

¹École polytechnique

²Norwegian Institute of Science and Technology

³University of Sheffield

⁴University of Warsaw

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Motivation

a quantale $(Q, \leq, \cdot, 1)$ is a complete lattice (Q, \leq) and a monoid $(Q, \cdot, 1)$, and \cdot preserves sups in both arguments

for $f, g: X \to Q$ from relational structure (X, R) with ternary R a convolution operation is defined as

$$(f * g)(x) = \bigvee_{R(x,y,z)} f(y) \cdot g(z)$$

the convolution algebra is the algebra on Q^X

Convolution as a binary modality

$$(f * g)(x) = \bigvee_{R(x,y,z)} f(y) \cdot g(z) \qquad f,g: X \to Q$$

in Lambek calculus, convolution is a binary modality over a ternary frame

in boolean algebras with operators *n*-ary modalities in *B* are dual to n + 1-ary relations in *X*

there are correspondences between properties in X and identities in B

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Correspondences for Convolution Algebras

for general Q we get correspondence triangles

these yield uniform construction recipes for convolution algebras Q^X from X and value algebras Q

today: find X corresponding to modal quantale \mathbb{B}^X , with view on locality

Modal quantales

a domain quantale is a quantale with $dom: Q \rightarrow Q$ satisfying

 $\begin{array}{ll} dom(\alpha) \cdot \alpha = \alpha & (absorption) \\ dom(\alpha \lor \beta) = dom(\alpha) \lor dom(\beta) & (finite sup-preservation) \\ dom(\bot) = \bot & (empty sup-preservation) \\ dom(\alpha) \le 1 & (subidentity) \\ dom(\alpha \cdot \beta) = dom(\alpha \cdot dom(\beta)) & (locality) \end{array}$

a codomain quantale (Q, cod) is a domain quantale in (Q^{op}, dom)

a modal quantale is a domain and codomain quantale such that

 $dom \circ cod = cod$ $cod \circ dom = dom$ (compatibility)

if \mathbb{B}^X is a modal quantale ... which structure has X?

Object-free category?

categories. A category is a set C of arrows with two functions $s, t: C \rightarrow C$, called "source" and target", and a partially defined binary operation #, called composition, all subject to the following axioms, for all x, y, and z in C:

The operation x # y is defined iff sx = ty and then

$$s(x \# y) = sy$$
, $t(x \# y) = tx$; (1)

$$x \# sx = x$$
, $tx \# x = x$; (2)

(x # y) # z = x # (y # z) if either side is defined; (3)

ssx = sx = tsx;ttx = tx = stx. (4)

Then x is an identity iff x = sx or, equivalently, iff x = tx.

[MacLane, Ch.XII.5]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

we want to be more general/relational

Multioperations

$\mathcal{P}(X \times X \times X) \simeq X \times X \to \mathcal{P}X$

- a multioperation is a function $X \times X \rightarrow \mathcal{P}X$
- we extend $\odot: X \times X \to \mathcal{P}X$ to
 - $\odot: \mathcal{P}X \times \mathcal{P}X \to \mathcal{P}X, \ (A, B) \mapsto \bigcup \{x \odot y \mid x \in A, y \in B\}$

- ⊙ is a partial operation if |x ⊙ y| ≤ 1 for all x, y ∈ X
- \odot is a (total) operation if $|x \odot y| = 1$ for all $x, y \in X$

the shuffle of words is a multioperation

lr-Multisemigroups

an ℓr -multimagma is a multimagma (X, \odot) with $\ell, r : X \to X$ satisfying

$$x \odot y \neq \emptyset \Rightarrow r(x) = \ell(y)$$

$$\ell(x) \odot x = \{x\} \qquad x \odot r(x) = \{x\}$$
 (absorption)

an lr-multisemigroup is an associative lr-multimagma

 $x \odot (y \odot z) = (x \odot y) \odot z$

an ℓr -multimagma is ℓr -local if $r(x) = \ell(y) \Rightarrow x \odot y \neq \emptyset$

categories are precisely the partial ℓr -local ℓr -semigroups

lr-locality captures the composition pattern of categories

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Examples

pair groupoid $(A \times A, \odot, \ell, r)$ is an ℓr -local partial ℓr -semigroup with

$$(a,b) \odot (c,d) = \begin{cases} \{(a,d)\} & \text{if } b = c \\ \emptyset & \text{otherwise} \end{cases}$$

 $\ell((a,b)) = (a,a) = r((b,a))$

shuffle ℓr -multisemigroup $(A^*, ||, \ell, r)$ is ℓr -local because || is total with $\ell(w) = \varepsilon = r(w)$

PAMs with unit 1 used in separation logic are non-local because $\ell(x) = 1 = r(x)$ and composition is partial

paths $f: [0,1] \rightarrow T$ in topology form local partial ℓr -magmas

more generally, elements of $X_{\ell} = \{x \mid \ell(x) = x\} = \{x \mid r(x) = x\} = X_r$ are orthogonal idempotent units of X ($\ell(x) \neq \ell(y) \Leftrightarrow \ell(x)\ell(y) = \emptyset$)

Properties

in *lr*-multimagmas

 $\ell \circ r = r \qquad r \circ \ell = \ell \qquad \text{(compatibility)} \\ \ell(\ell(x)y) = \ell(x)\ell(y) \qquad r(xr(y)) = r(x)r(y) \qquad \text{(export)}$

in *lr*-multisemigroups

 $\ell(xy) \subseteq \ell(x\ell(y))$ $r(xy) \subseteq r(r(x)y)$ (weak locality)

in *lr*-local *lr*-multisemigroups

 $\ell(xy) = \ell(x\ell(y)) \qquad r(xy) = r(r(x)y) \qquad (\text{locality})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Origin of locality

 ℓr -multisemigroup is ℓr -local iff

 $\ell(x\ell(y)) = \ell(xy) \qquad r(r(x)y) = r(xy)$

equational locality thus captures the composition pattern of categories

 $xy \neq \emptyset \Leftrightarrow r(x) = \ell(y)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Constructing powerset quantales

if (X, \odot, ℓ, r) is an ℓr -multisemigroup, then $(\mathcal{P}X, \subseteq, \odot, X_{\ell})$ is a boolean quantale whose underlying lattice is atomic

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

all $\ell(x)/r(x)$ in X are combined into unit X_{ℓ} of $\mathcal{P}X$

categories lift to powerset quantales with arrows as atoms

pair groupoids lift to quantales of binary relations

we refine this construction lifting $dom = \mathcal{P}\ell$ and $cod = \mathcal{P}r$

Lifting to modal powerset quantales

from *lr*-multimagma

(absorption)	Ar(A) = A	$\ell(A)A = A$
(sup-preservation)	$r\left(\bigcup \mathcal{A}\right) = \bigcup_{i=1}^{n} r(\mathcal{A})$	$\ell\left(\bigcup \mathcal{A}\right) = \bigcup_{i=1}^{i} \ell(\mathcal{A})$
(subidentity)	$r(A) \subset X_r$	$\ell(A) \subset X_\ell$
(compatibility)	$r(\ell(A)) = \ell(A)$	$\ell(r(A)) = r(A)$
(export)	r(Ar(B)) = r(A)r(B)	$\ell(\ell(A)B) = \ell(A)\ell(B)$

from *lr*-multisemigroup

 $\ell(AB) \subseteq \ell(A\ell(B))$ $r(AB) \subseteq r(r(A)B)$ (weak locality)

from local ℓr -multisemigroup

 $\ell(AB) = \ell(A\ell(B))$ r(AB) = r(r(A)B) (locality)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modal correspondences

if X is an *lr*-multimagma,

- then $(\mathcal{P}X, \subseteq, \odot, X_{\ell}, dom, cod)$ is a boolean modal prequantale
- it is a weakly local modal quantale if X is an ℓr -multisemigroup
- it is a modal quantale if X is a local ℓr -multisemigroup

we get converse directions, too

- if $\mathcal{P}X$ is a prequantale, then X is an ℓr -multimagma
- if $\mathcal{P}X$ is a quantale, then X is an ℓr -multisemigroup
- if $\mathcal{P}X$ is a modal quantale, then X is a local ℓr -multisemigroup

we don't see $xy \neq \emptyset \Leftrightarrow r(x) = \ell(y)$ in quantale instead we see $\alpha\beta \neq 0 \Leftrightarrow cod(\alpha)dom(\beta) \neq 0$

Modal Correspondences

 $dom(A \odot dom(B)) = \bigcup \{\ell(x \odot \ell(y)) \mid x \in A, y \in B, r(x) = \ell(\ell(y))\}$ $= \bigcup \{\ell(x \odot y) \mid x \in A, y \in B, r(x) = \ell(y)\}$ $= dom(A \odot B)$

$$\ell(x \odot \ell(y)) = dom(\{x\} \odot dom(\{y\}))$$
$$= dom(\{x\} \odot \{y\})$$
$$= \ell(x \odot y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples

categories lift to modal powerset quantales

pair groupoids lift to modal powerset quantales of binary relations shuffle multisemigroups lift to quantales of shuffle languages PAMs lift to non-local assertion quantales of separation logic path algebras in topology lift to modal powerset prequantales

Jónsson/Tarski knew that groupoids lift to RAs with converse

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Discussion

further examples can be found in paper

results extend to convolution algebras Q^{χ} with correspondence triangles

Q can be semiring/Kleene algebra when finiteness properties for \bigvee hold

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

see arXiv paper for details

Conclusion

we introduced ℓr -multisemigroups

related them with categories

showed how ℓ/r correspond to dom/cod

explained how locality relates to composition pattern of categories

presented generic construction recipe for modal powerset quantales