Accretive Computation of Global Transformations

A. Fernandez L. Maignan A. Spicher

Univ Paris Est Creteil, LACL, 94000, Creteil, France firstname.lastname@u-pec.fr

RAMICS 2021

A, Fernandez (UPEC)

Accretive Computation of GT

Global Transformations (GT): general frame of work

Describe local, deterministic and synchronous systems

- Describe local, deterministic and synchronous systems
- Cellular automata

- Describe local, deterministic and synchronous systems
- Cellular automata, L-systems

- Describe local, deterministic and synchronous systems
- Cellular automata, L-systems, causal graph dynamics

- Describe local, deterministic and synchronous systems
- Cellular automata, L-systems, causal graph dynamics
- Different structure / space

- Global Transformations (GT): general frame of work
 - Describe local, deterministic and synchronous systems
 - Cellular automata, L-systems, causal graph dynamics
- Different structure / space
- Same rewriting procedure

$$\{ \bigcirc \mapsto \bigcirc, \ldots \}$$

- Global Transformations (GT): general frame of work
 - Describe local, deterministic and synchronous systems
 - Cellular automata, L-systems, causal graph dynamics
- Different structure / space
- Same rewriting procedure
 - pattern matching

- Global Transformations (GT): general frame of work
 - Describe local, deterministic and synchronous systems
 - Cellular automata, L-systems, causal graph dynamics
- Different structure / space
- Same rewriting procedure
 - pattern matching
 - Local application

- Global Transformations (GT): general frame of work
 - Describe local, deterministic and synchronous systems
 - Cellular automata, L-systems, causal graph dynamics
- Different structure / space
- Same rewriting procedure
 - pattern matching
 - Local application
 - Result reconstruction

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

Define global transformations of presheaves

- Presheaves: generalized graphs
- This presentation: focus only on graphs

History:

- L. M., A. S. Global Graph Transformations. ICGT 2015
- Triangular mesh refinement Rule-based Specification

SIGGRAPH 98 Course Notes

History:

- L. M., A. S. Global Graph Transformations. ICGT 2015
- Triangular mesh refinement Rule-based Specification

Simple, but what happens on overlaps ?

History:

- L. M., A. S. Global Graph Transformations. ICGT 2015
- Triangular mesh refinement Rule-based Specification

Simple, but what happens on overlaps ?

This is what we want !

History:

- L. M., A. S. Global Graph Transformations. ICGT 2015
- Triangular mesh refinement Rule-based Specification

Simple, but what happens on overlaps ?

Also compliant with the rules...

How to solve this ambiguity ?

Pattern-matching

?

How to solve this ambiguity ?

▶ Pattern-matching \Rightarrow Local results

- Pattern-matching \Rightarrow Local results
- Add a rule

- Pattern-matching ⇒ Local results
- Add a rule + inclusions for overlap

- ▶ Pattern-matching \Rightarrow Local results \Rightarrow Reconstruction
- Add a rule + inclusions for overlap

The category G_M

Structure for "thing being part of other thing " ?Preorder

The category G_M

Structure for "thing being part of other thing at some place" ?
Preorder ⇒ Category

The category G_M

Structure for "thing being part of other thing at some place" ?

• Preorder \Rightarrow Category

Work in G_M : category of graphs with inclusions

- Objects: Graphs (directed multigraphs)
- Arrows: Inclusions of graphs (monomorphisms)
- \subset G: category of graphs with graph homomorphism

Functor

► Transformation respects arrow (~ monotony): The way the local output occur in the global output depends on the way the local input occur as a part of the global input

Functor

► Transformation respects arrow (~ monotony): The way the local output occur in the global output depends on the way the local input occur as a part of the global input

Rule system

Definition: Rule system

A rule system T is tuple $\langle \Gamma, L, R \rangle$ where Γ is a category, L, R : $\Gamma \rightarrow G_M$ are functors, and L is full and faithfull (\simeq injective).

Equivalently: Partial functor $P: G_M \to G_M := R \circ L^{-1}$

Computation

Definition: Global Rewrite Step

The rewrite step is the functor $\overline{T} : G_M \to G$ given by: $\overline{T}(-) = Colim(U \circ P \circ L \circ \Pi_{L/-})$, with $U : G_M \to G$ forgetful functor.

No colimits in G_M ...

- Taking colimits in G gives $\overline{T} : G_M \to G$
- Rule systems do not preserve injectivity !

Definition: Global Transformation

A global transformation T is a rule system such that $\overline{T} : G_M \to G$ factors through $U : G_M \to G$. In this case $T : G_M \to G_M$ is the functor such that $U \circ T = \overline{T}$.

Global transformation: $T: G_M \to G_M$ is iterable !

Triangular mesh refinement, sierpinsky ...

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

No inclusion T(m): T not a global transformation !

Problem: Find a local way to check if rule system is GT ? (ie. by just looking at the rules)

A, Fernandez (UPEC)

Accretive Computation of GT

Computing with GT

Define generic algorithm:

- ► Big operations ⇒ small generic operations
- Breaks down global step \Rightarrow sequence of local steps

Preserving injectivity for sequence of local steps?

Link with global transformation ?

We restrict to connected finite graphs and finite rule systems.

Proposition

The comma category L/g is isomorphic to a **preorder** (if no automorphism of rule \Rightarrow **poset**).

- Maximal occurences gives the maximal local results
- Other occurences used to glue theses results

Proposition

The comma category L/g is isomorphic to a **preorder** (if no automorphism of rule \Rightarrow **poset**).

- Maximal occurences gives the maximal local results
- Other occurences used to glue theses results

Proposition

The comma category L/g is isomorphic to a **preorder** (if no automorphism of rule \Rightarrow **poset**).

- Maximal occurences gives the maximal local results
- Other occurences used to glue theses results

Proposition

The comma category L/g is isomorphic to a **preorder** (if no automorphism of rule \Rightarrow **poset**).

- Maximal occurences gives the maximal local results
- Other occurences used to glue theses results

Proposition

The comma category L/g is isomorphic to a **preorder** (if no automorphism of rule \Rightarrow **poset**).

- Maximal occurences gives the maximal local results
- Other occurences used to glue theses results

Gluing partial results

Compute gluing along suture:

Gluing partial results

Compute gluing along suture:

Definition: Partial decomposition

Given a graph g, a partial decomposition is a subset M of maximal occurences of L/g such that the restriction \widetilde{M} of L/g to M and morphisms into M is connected.

L/g: category of partial decompositions with set inclusions.

Definition: Partial computation functor

Let $\widetilde{T}_g: \widetilde{L/g} \to G$ given by $T(\widetilde{M}) = Colim(U \circ P \circ L \circ \Pi_{L/g} \upharpoonright \widetilde{M}).$

Definition: Accretive rule system

T is accretive iff. for any g, \widetilde{T}_g factors through $U: G_M \to G$.

• Accretive \neq Global transformation

Generalized pushout

Definition: suture diagram

A suture diagram $D: I \rightarrow G_M$ is a diagram (functor) with the following shape:

The gluing is called a generalized pushout:

Definition: generalized pushout

Given a suture diagram $D: I \rightarrow G_M$ its generalized pushout is

 $Colim(U \circ D)$

Colimit in G: does not preserve injectivity

A, Fernandez (UPEC)

Accretive Computation of GT

Pattern matching \Rightarrow sequence $\langle r_1, \ldots, r_k \rangle$ of maximal local results. Sequence of gluings \Rightarrow *partial results*

$$r_{1} = P_{1} \xrightarrow{i_{1}} P_{2} \xrightarrow{i_{2}} P_{3} \xrightarrow{j_{3}} P_{4} \xrightarrow{j_{4}} \cdots \xrightarrow{j_{k}} P_{k}$$

$$r_{2} \xrightarrow{j_{1}} r_{3} \xrightarrow{j_{2}} r_{4} \xrightarrow{j_{3}} r_{5} \xrightarrow{j_{4}} \cdots$$

Proposition

Given path $\widetilde{M}_1 \subseteq \cdots \subseteq \widetilde{M}_k$ in $\widetilde{L/g}$ where:

$$\widetilde{M_1} = \{r_1\}, \widetilde{M_{i+1}} = \widetilde{M_i} \cup \{r_{i+1}\}.$$

Then for any $i \in \{1, \ldots, k\}$, $\widetilde{T}_{\mathcal{G}}(\widetilde{M}_i) = P_i$.

▶ If some gluing is non-injective then *T* is not acccretive.

A, Fernandez (UPEC)

Accretive Computation of GT

Consider the following rule system:

. . .

Consider the following rule system:

. . .

Removes isolated vertices \Rightarrow Global Transformation

Consider the following rule system:

Removes isolated vertices \Rightarrow Global Transformation Not accretive :

Consider the following rule system:

Removes isolated vertices \Rightarrow Global Transformation Not accretive :

Consider the following rule system:

Removes isolated vertices \Rightarrow Global Transformation Not accretive :

Issue with last example

Find a criterion on rule systems which implies GT?

Criterion on rule systems which implies accretive GT

Issue with last example

Find a criterion on rule systems which implies GT?

Criterion on rule systems which implies accretive GT

Issue with last example

Find a criterion on rule systems which implies GT?

Criterion on rule systems which implies accretive GT

The three local results must be glued at the same time !

- This gluing is not induced by a suture of two local result !
- Define a criterion which forbids that !

Incrementality

Definition: Incrementality

T is incremental if for any $\gamma_1 \xrightarrow{i_1} \gamma \xleftarrow{i_2} \gamma_2$ in Γ , any graph $e \in \{ \cdot, \cdot \to \cdot \}$, and any $R(\gamma_1) \xleftarrow{x_1} e \xrightarrow{x_2} R(\gamma_2)$ such that $R(i_1) \circ x_1 = R(i_2) \circ x_2$, there are $\gamma_1 \xrightarrow{\pi_1} \gamma' \xleftarrow{\pi_2} \gamma_2$ and $x : e \to R(\gamma')$ such that:

Theorem

If a rule-system is incremental, then it is an accretive GT.

A, Fernandez (UPEC)

Accretive Computation of GT

Conclusion & Perspectives

Global transformations: Synchronous rewriting

Works on wide variety of structures

Rewriting algorithm: Sequentialization of GT

Designed to be generic

Preserving injections:

	non-incr.		incr.	
	non-G.T.	G.T.	non-G.T.	G.T.
non-accretive	ex. Fig. 3a	ex. Fig. 3c	None, Thm. $1/2$	None, Thm. 2
accretive	ex. Fig. 3b	ex. Fig. 3d	None, Thm. 1	Sierpenski

Non deterministic computations

Bicategory of open functors (arxiv)

Algorithm in other categories ?

- Cellular automata, L-Systems, CGD
- ► (*M*)-adhesive categories, topos ?

Pattern matching like Knuth-Morris-Pratt

Break down pattern matching¹

¹Y. V. Srinivas, A Sheaf-Theoretic approach to pattern matching, 1993

A, Fernandez (UPEC)

Table of Contents

Introduction

Global transformations

Accretive computation

Incremental criterion

Conclusion

Appendix

Rule system

Definition: Rule system

A rule system T is tuple $\langle \Gamma, L, R \rangle$ where Γ is a category, L, R : $\Gamma \rightarrow G_M$ are functors, and L is full and faithfull (\simeq injective).

Equivalently: Partial functor $P: G_M \to G_M := R \circ L^{-1}$

Perspectives

Non deterministic computations

Figure: Left: ND on labels, Right: ND on structure

A, Fernandez (UPEC)

Accretive Computation of GT

RAMICS 2021 25 / 25

Consider this rule system:

Let's compute:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Let's compute:

•----•

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

Consider this rule system:

And the inclusion of graphs *m*:

No inclusion T(m): T not a global transformation !

Problem: Find a local way to check if rule system is GT ? (ie. by just looking at the rules)

A, Fernandez (UPEC)

Accretive Computation of GT

DPO

Amalgamation

Global transformations

Definition

A (deterministic context-free) L-system $L: \Sigma^* \to \Sigma^*$ is a function given by:

- an alphabet Σ and
- a function $P: \Sigma \to \Sigma^*$ such that
- $L(a_0a_1\ldots a_n)=P(a_0)P(a_1)\ldots P(a_n)$, for any $a_0a_1\ldots a_n\in \Sigma^{\star}$

Definition

A (deterministic context-free) L-system $L: \Sigma^{\star} \to \Sigma^{\star}$ is a function given by:

- an alphabet Σ and
- a function $P: \Sigma \to \Sigma^*$ such that

•
$$L(a_0a_1\ldots a_n)=P(a_0)P(a_1)\ldots P(a_n)$$
, for any $a_0a_1\ldots a_n\in \Sigma^{\star}$

Example:

$$\Sigma = \{a, b\}$$

abbab

$$P = \begin{cases} a \mapsto b \\ b \mapsto ab \end{cases}$$

Definition

A (deterministic context-free) L-system $L: \Sigma^{\star} \to \Sigma^{\star}$ is a function given by:

- an alphabet Σ and
- a function $P: \Sigma \to \Sigma^*$ such that
- $L(a_0a_1\ldots a_n)=P(a_0)P(a_1)\ldots P(a_n)$, for any $a_0a_1\ldots a_n\in \Sigma^{\star}$

Example:

$$\Sigma = \{a, b\}$$

$$P = \begin{cases} a \mapsto b \\ b \mapsto ab \end{cases}$$

Definition

A (deterministic context-free) L-system $L: \Sigma^{\star} \to \Sigma^{\star}$ is a function given by:

- an alphabet Σ and
- a function $P: \Sigma \to \Sigma^*$ such that
- $L(a_0a_1\ldots a_n)=P(a_0)P(a_1)\ldots P(a_n)$, for any $a_0a_1\ldots a_n\in \Sigma^{\star}$

Example:

$$\Sigma = \{a, b\}$$

$$= \begin{cases} a \mapsto b \\ b \mapsto ab \end{cases}$$

$$dbbdb$$

$$\downarrow$$

$$bababbab$$

$$\downarrow$$

$$abbabbabbabbab$$

Ρ

- 1- 1- - 1-

Category

Rewriting: Decomposition and recomposition

- Notion of "thing" is part of other "thing"
- Preorder structure

Category

Rewriting: Decomposition and recomposition

- Notion of "thing" is part of other "thing"
- Preorder structure

Category

Rewriting: Decomposition and recomposition

- Notion of "thing" is part of other "thing" at some "place"
- Category

